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Abstract— In this paper, we propose a novel progressive non-
linear measurement update for circular states. This generalizes
our previously published circular filter that so far was limited
to identity measurement equations. The new update method is
based on circular distributions in order to capture the periodic
properties of a circular system better than conventional ap-
proaches that rely on standard Gaussian distributions. Besides
the progressive measurement update, we propose two additional
measurement updates that are obtained by adapting traditional
filters to the circular case. Simulations show the superiority of
the proposed progressive approach.

I. INTRODUCTION

Many applications involve the estimation of angular quan-
tities based on noisy measurements. Typical examples include
the orientation of a vehicle, the wind direction, or the angle
of a robotic joint. Sometimes these angles can be observed
directly, but this is usually not the case. In certain applications,
an angle has to be estimated but only a quantity that depends
nonlinearly on the angle can be observed. This issue poses the
problem of angular estimation with nonlinear measurement
functions.

Traditional approaches to estimation of angular quantities
are typically based on the use of classical filters such as the
Kalman filter [1] or nonlinear extensions thereof such as the
extended Kalman filter (EKF) or the unscented Kalman filter
(UKF) [2]. However, classical approaches are usually based on
the assumption of a Gaussian distribution, which is inaccurate
in the angular case. There are two critical issues with these
approaches. First, they neglect the periodic nature of the
circle and can cause problems when the periodic boundary
is crossed. Second, the true probability distribution has a
different shape, which is not precisely Gaussian. Directional
statistics [3], [4] is a subdiscipline of statistics that deals with
directional rather than discrete or real-valued quantities. It can
be used to remedy these problems by relying on probability
distributions defined on the unit circle.

In 2009, Azmani et. al introduced a recursive angular filter
based on the von Mises distribution [5], [6]. However, this
filter is limited to identity system and measurement functions.
In 2013, we published an angular filter based on the von
Mises distribution, the wrapped normal distribution, and the
wrapped Dirac mixture distribution. This filter can deal with
arbitrary nonlinear system functions while still requiring the
measurement function to be the identity [7]. We have applied
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the filter to constrained object tracking [8] and the sampling
scheme has been used for sensor scheduling [9].

In this paper, we introduce an extended angular filter based
on the wrapped normal distribution, and the wrapped Dirac
mixture distribution. It can handle both nonlinear system and
measurement functions. Moreover, the von Mises distribution
is no longer used, which makes the filter computationally
more efficient and easier to implement, since numerical
computations involving Bessel functions can be avoided.
Consequently, all computations can be performed in closed
form, which is an advantage compared to most circular filters.

II. RECURSIVE FILTER

We consider a dynamic system with the angular state
xk € [0,27) at time step k. The system equation is given by

ZTpt1 = a(xg) + wr, mod 27

with nonlinear system function a : [0,27) — [0,27) and
additive system noise wg ~ f*(+). The measurement equation
is given by

2, = h(we) + v

with nonlinear measurement function A : [0,27) — H and
additive noise v, ~ fV(-).

The measurement space H may be the unit circle S* or the
real vector space R”™, but the presented principles are more
general and can be applied to other measurement spaces as
well. Here, we restrict ourselves to additive noise, because
this allows to calculate the likelihood f(Z,|xx) according to

fElee) = (2, — M)

where f is the probability density function (pdf) of the noise
(see Appendix A). If the noise is not additive, calculation
of the likelihood may be more complicated. However, the
proposed algorithms can be applied to any type of noise as
long as it is possible to calculate the likelihood explicitly.

In the following, we derive a recursive filtering algorithm
to estimate the system state x. For this purpose, we need to
perform two operations, prediction and update. The prediction
step takes the previously estimated state xj,_; and obtains
the predicted state 2% according to the system function.
Subsequently, the update step calculates the estimated state
xf, by including the measurement 2.

III. PREREQUISITES

Before we describe our contribution, we introduce the
relevant concepts from circular statistics.



A. Continuous and Discrete Probability Distributions

In this section, we define the probability distributions
required for the proposed filtering algorithm and show some
of their relevant properties.

Definition 1 (Wrapped normal distribution)
A wrapped normal (WN) distribution is given by its pdf
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with parameters p € [0,27) and o > 0.

The WN distribution is obtained by taking a Gaussian
distribution and wrapping it around the unit circle while
summing up the probabilities for equivalent angles. This
distribution is of particular interest because it fulfills a central
limit theorem in the circular case. For this reason, it is
reasonable to assume that angular noise is WN distributed.

WN distributions are closed under convolution (i.e., addi-
tion of independent random variables). For two WN distribu-
tions with parameters (u1,01) and (us2,02) the convolution
f@; pa, 01)xf(x; pa, o2) is given by a WN distribution (i, o)
with parameters p = p1 + g2 mod 27 and o = \/0? + 3.

Definition 2 (Wrapped Dirac mixture distribution)
A wrapped Dirac mixture (WD) distribution with L com-
ponents is given by its pdf

L
f(x;ﬁla"'aﬁL7w17"'awL) :Zw](s(x_ﬁj)
j=1

with Dirac positions B1,...,8 € [0,27) and weighting
coefficients wy, ..., wr, > 0 with Zle w; = 1.

Unlike the continuous WN distribution, the WD distribution
is a discrete distribution. It can be imagined as a collection
of weighted samples of the true distribution. This makes it
easy to propagate a WD distribution through a nonlinear
function. Consequently, we use the WD distribution for
certain intermediate steps in the prediction as well as update
algorithms.

The parameters of a WN distribution can be estimated by
matching the first circular moment of a WD distribution as
described in Appendix B.

Definition 3 (Circular moment)

For a random variable x € S' distributed according to
the pdf f(-), the n-th circular moment is given by

2m
E(exp(iz)") = / exp(inz)f(x) dz € C,
0
where 1 is the imaginary unit.

Lemma 1 The n-th circular moment of a WN distribution
with parameters (., 0) is given by

(me5)
exp | tnu — > .

The n-th circular moment of a WD distribution with param-
eters (B1,...,BL,w1,...,w) is given by

Zle w; exp(ing;) .

B. Nondeterministic Sampling

In order to obtain a WD distribution from a WN distri-
bution, we draw samples from the WN distribution. We dis-
tinguish between two possible approaches, nondeterministic
and deterministic sampling.

Nondeterministic sampling refers to methods that draw
samples randomly from a probability distribution. For ex-
ample, random numbers could be generated according to a
Gaussian distribution [10].

To sample circular distributions, usually the Metropolis-
Hastings algorithm can be applied [11]. However, in the
case of a WN distribution, nondeterministic sampling can be
reduced to sampling of a Gaussian distribution with identical
parameters (u, o) and considering the samples modulo 27.

C. Deterministic Sampling

Unlike nondeterministic sampling where samples are drawn
randomly, deterministic sampling tries to choose samples that
approximate the original distribution according to some simi-
larity measure. The advantage is that a much smaller number
of samples is usually sufficient to get a good approximation
of the original density. Furthermore, deterministic sampling
allows the derivation of algorithms that yield reproducible
results.

Deterministic sampling can, for example, be performed
by moment matching as in the case of the UKF [2].
Rather than conventional moment matching, we use circular
moment matching, which we previously developed in [7].
For L = 3 Dirac components, the deterministic samples of
a WN distribution can be calculated in closed form (see
Appendix B).

IV. NONLINEAR MEASUREMENT UPDATE

Since the prediction step has previously been published in
[7], we will focus on the measurement update. For the sake
of completeness, we give the prediction step in Appendix C.

In order to perform the nonlinear measurement update, we
use an approach that we call WN assumed density filtering.
These are similar to Gaussian assumed density filters such as
[12], which rely on the assumption that the posterior density
f(x,|2;) is Gaussian. In a similar fashion, we assume the
posterior density f(zx|Z,) to be a WN density.

According to Bayes’ rule, we get

fCrlzr) - (k)

Flonlz) = f(&)

o f(Zplor) - f (k)
—— N~
likelihood prior

Since we assume that the likelihood can be calculated
explicitly, we only have to multiply it with the prior density
and fit a WN density to the result. As multiplying the
likelihood and the prior WN density can not be evaluated
analytically, we approximate the prior WN density with a WD
distribution and perform the multiplication componentwise.
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Fig. 1: Example of measurement update

We introduce three different methods that are all based on this
idea and that have different advantages and disadvantages.

A. Nondeterministic Update

To perform the nondeterministic update, we draw a certain
number of L random samples from the original distribution.
The WD distribution is reweighted by multiplying each
component with the likelihood f(Z;|x) and subsequently
renormalized. Finally, a WN distribution is fitted to the
reweighted WD distribution. An example with L = 30 is
depicted in Fig. la and the algorithm is given in Algo. 1. If
we assume that the likelihood can be evaluated in constant
time, the overall runtime of the algorithm is O(L), i.e., it
increases linearly with the number of samples.

This algorithm bears close resemblance to the Gaussian
particle filter [13] except that we use WN distributions instead
of Gaussians. For this reason, it also shares its weaknesses,
namely the fact that a much larger number of samples
is needed to match the quality of deterministic sampling.
Furthermore, the algorithm still fails if no samples are located
in an area in which the likelihood function has large values.
This can happen when the likelihood is very narrow or far
away from the prior state estimate. Even worse, the filter can
fail under good circumstances with a certain (low) probability
because the samples are drawn in an unfortunate way and
are not representative of the true density.

Input: 2, (measurement),
(uh, %) (predicted distribution of state),
f(Z;]zx) (likelihood function),
L (number of samples)
Output: (uf5,of) (estimated distribution of state)
(B1,-..,Br,wi,...,wr) <sampleNondeterm (s, o) ;
for j < 1to L do
| wj e ws - f(2]85);
end
(ug,0%) «matchWn(fy, ..., 8L, wi,...,wr);
Algorithm 1: Nondeterministic measurement update.

B. Naive Deterministic Update

A naive and computationally fast method is to use the
previous approach in conjunction with deterministic sampling.
First, the prior WN distribution is sampled deterministically
to obtain a WD distribution with L = 3 components. The rest
of the algorithm remains the same. An example is depicted

in Fig. 1b and the algorithm is given in Algo. 2. If the
likelihood can be evaluated in constant time, the runtime of
this algorithm is in O(1).

The disadvantage of this algorithm becomes obvious when
looking at examples where at least two of the three samples
are located in area in which the likelihood function has small
values. In this case, the algorithm tends to become numerically
unstable or the posterior distribution is estimated poorly. In
the context of particle filters, this phenomenon is referred to
as particle degeneracy [14].

Input: Z, (measurement),

(uy,o%) (predicted distribution of state),

f(Z;]xk) (likelihood function)

Output: (u5,of) (estimated distribution of state)
(B1,-..,P3,w1,...,w3) <—sampleDeterm(u}, 07}) ;
for j + 1 to 3 do

| wj e ws - f(2]85);

end

(pg, a,‘i) ematchWn(ﬂl, . B3, w1, ... ,W3);
Algorithm 2: Naive deterministic measurement update.

C. Progressive Deterministic Update

Because of the drawbacks of the previous algorithms,
we introduce a third approach. This approach extends the
deterministic method by a progressive filtering scheme that
gradually includes the likelihood. The proposed algorithm
constitutes a circular version of the so called progressive
Gaussian filter (PGF42) [15]. A similar approach is also used
by the progressive Dirac mixture filter [16].

The key idea is to take Bayes’ rule and to express the
likelihood as a product of likelihoods

f@rl2y) o< f(Zglzr) - f (o)
= (fGelze)™ o FGlze)™) - flaw)

where A = 25:1 A; = 1. By choosing the values of
A1, ..., As appropriately, it can be ensured that reweighting
does not cause particle degeneration. More precisely, we can
guarantee that the quotient between the smallest new weight
Imin and the largest new weight [, does not fall below
some predetermined threshold 7, i.e.,
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Fig. 2: Example of measurement update with progressive sampling. On the top left, the original prior is depicted and on the
bottom right the final result can be seen. The threshold is chosen as 7 = 0.3 here.

Since we start with a uniformly weighted distribution, we
have

b jmin f(2]85)"
lmax _nax f(§k|ﬂj)>\
7j=1,...,3
. N A
min f(28)
_ >T,
max _f(2,]85)
7j=1,...,3
which leads to
log(7)

<
)\ - j:l,’..A,Sf(ék‘ﬁj)
log max  f(2,15;)

From this inequality, we can calculate the largest permissible
step size A. After obtaining the reweighted WD distribution
this way, we fit a WN distribution and use deterministic
sampling to obtain a new WD distribution, where all compo-
nents have equal weight. Obviously, each of these steps is an
approximation. The process is repeated until Ay, ..., A; sum
up to one. The algorithm is given in Algo. 3 and illustrated
in Fig. 2. V. EVALUATION

In order to evaluate the proposed methods, we performed
Monte Carlo simulations in a scenario with two-dimensional
measurements. We use WN distributed noise w; and the
system function

ar(xk) =z + ¢ sin(xg) + co -

This equation is motivated by a physical model of a robotic
arm affected by gravity, which rotates around a joint [7]. The
measurement equation is given by

[cos(mk )] .

sin(xy)

2 =

Input: z;,, (measurement),
(uh,or) (predicted distribution of state),
f(2;]zk) (likelihood function), threshold parameter 7
Output: (u7,of) (estimated distribution of state)
A+ 1;
(1. 7) < (1. 00
while A > 0 do
(B1,-.., 03, w1,...,w3) <sampleDeterm(p, o) ;
Wmin € jznlun 3(f(zk‘ﬂj))’
Wmax Enax (f(§k|ﬁj))’
7j=1,...,3

. log(T)

A < min (A, log(wmin/wmax)

for j < 1 to 3 do
| wy = wy - f(Zl BN

):

end
(1, 0) «matchWn(fy, ..., B, wy, ..., ws3);
A—A—-)

end

(1%, o%) < (1, 0); ,
Algorithm 3: Progressive measurement update.

with Gaussian noise v, ~ A(0, C}). This can be imagined
as the projection of the end of the robot arm onto the x and
y axes.

For the system function, we use the parameters c;
0.1,co = 0.15. The system noise is distributed according
to a WN distribution with parameters (u}’, o) = (0,0.2)
and the initial estimate is a WN distribution with parameters
(u§,08) = (1,1). We simulated 1000 Monte Carlo runs, each
with a length of 100 time steps. For the nondeterministic
filter, we used L = 100 samples and for the progressive filter,
we used the threshold 7 = 0.2.



Since the main issue here is the evaluation of the nonlinear
measurement update, we consider three different measure-
ment noise levels, large, medium and small, which have
covariances C} = diag(1,1), C} = diag(0.1,0.1), and

v = diag(0.01,0.01), respectively. An example run with
large measurement noise is depicted in Fig. 3.

To provide a comparison between the proposed filtering
algorithms, we compared the angular root mean square error
(RMSE)

1 100
J o3 (min(a — g, 27 = [ — )’
where 2, is the true state at time k.

The results are depicted in Fig. 4. The nondeterministic
filter and the progressive filter work well in all cases, but
the naive deterministic filter fails for the case of small noise
because of particle degeneration. Not surprisingly, the naive
deterministic filter is the fastest. The progressive filter is faster
than the nondeterministic filter because it uses significantly
fewer samples. Thus, the progressive filter is a good choice
regarding both performance and estimation quality.

VI. CONCLUSION

In this paper, we have presented a complete circular filter
that can handle both nonlinear system and measurement
functions. All required algorithms have been given in pseudo
code to facilitate easy implementation. In particular, we would
like to emphasize that all calculations are performed in closed
form and there is no need for numerical approximations or
the evaluation of complicated functions, such as the Bessel
functions usually present in von Mises based approaches.

We have evaluated our results in simulations. The dif-
ferent proposed approaches have distinct advantages and
disadvantages, but the progressive approach is shown to be
superior in that it provides overall good results while being
computationally efficient.

Future work may include deterministic sampling with more
than three Dirac components and the extension to filtering
multiple dependent angles.

ACKNOWLEDGMENT

This work was partially supported by grants from the
German Research Foundation (DFG) within the Research
Training Groups RTG 1126 “Soft-tissue Surgery: New
Computer-based Methods for the Future Workplace” and
RTG 1194 “Self-organizing Sensor-Actuator-Networks”.

APPENDIX
A. Derivation of Likelihood

The likelihood for additive noise is given according to

F(alz) = /H f (o plen) du,
Z/ f(§k|$k72k)fv(2k) duy,

/5

_f’l)

or) — ve) [ (vy) dug
= h(zk)) -

B. Moment Matching Between WN and WD

As shown in [7], the parameters (i, o) of a WN distribution
can be estimated by matching the first circular moment of a
WD distribution (84, ...,08L, w1, ..., wr) according to

(= atan2 <Zj_1 w; sin(p;), ijl W COS(ﬂj))

and

o= \/—210g (Zj_l w; cos(B; — Mj)) :

A WN distribution with parameters (i, o) can be approxi-
mated by the WD distribution with L = 3 components and
parameters w; = wy = w3 = 1/3 and

ﬂlzu_a’ 52:,“7 53:/14"‘04
where o = arccos ( exp (—"—2) — %)

C. Nonlinear Prediction

Nonlinear prediction is performed in the same fashion
as introduced in [7]. We assume w;, to be WN distributed
with parameters (p}”, 0}’). The prediction can be performed
as follows. First, the WN distribution representing the
previous estimate is sampled deterministically to obtain a WD
distribution with three components. Then, the samples are
propagated through the nonlinear function a(-) and used to
estimate the parameters of a new WN distribution. Finally, this
distribution is convolved with the noise distribution (", o}).

Imput: (15, 07) (estimated distribution of state),

ag(+) (system function)

(e, 0}’) (noise parameters)

Output: (17,,,0 ) (predicted distribution of state)

(B1,-.-, B3, w1,...,w3) <sampleDeterm(u5, o5) ;
for j < 1 to 3 do
| B < ax(B;):
end
(u,0) <matchWn(fy, ..., B3, wi,...,w3);
(i, o) = (p, 0) * (il 01);

Algorithm 4: Prediction.

The complete algorithm for prediction is given in Algo. 4.
If we assume that a; can be evaluated in constant time,
the runtime of the algorithm is in O(1), as we use a fixed
number of Dirac components. All operations (except possibly
the calculation of a;) can be evaluated in closed form.
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