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Abstract—Circular estimation problems arise in many ap-
plications and can be addressed with the help of circular
distributions. In particular, the wrapped normal and von Mises
distributions are widely used in the context of circular problems.
To facilitate the development of nonlinear filters, a deterministic
sample-based approximation of these distributions with a so-
called wrapped Dirac mixture distribution is beneficial. We pro-
pose a new closed-form solution to obtain a symmetric wrapped
Dirac mixture with five components based on matching the first
two circular moments. The proposed method is superior to state-
of-the-art methods, which only use the first circular moment to
obtain three Dirac components, because a larger number of Dirac
components results in a more accurate approximation.

Keywords—circular statistics, Dirac mixture, nonlinear filtering,
moment matching

I. INTRODUCTION

Many estimation problems involve circular quantities, for
example the orientation of a vehicle, the wind direction, or
the angle of a robotic joint. Since conventional estimation
algorithms perform poorly in these applications, particularly
if the angular uncertainty is high, circular estimation methods
such as [1], [2], [3], and [4] have been proposed. These methods
use circular probability distributions that stem from the field
of directional statistics [5], [6].

To facilitate the development of circular filters, sample-
based approaches are commonly used, because samples (i.e.,
Dirac delta distributions) can easily be propagated through
nonlinear functions. We distinguish deterministic and nondeter-
ministic approaches. In the noncircular case, typical examples
for deterministic approaches include the unscented Kalman
filter (UKF) [7], the cubature Kalman filter [8], and the smart
sampling Kalman filter (S2KF) [9]. Nondeterministic filters for
the noncircular case are the particle filter [10], the Gaussian
particle filter [11], and the randomized UKF [12].

We focus on deterministic approaches because they have
several distinct advantages. First of all, as a result of their
deterministic nature all results are reproducible. Second, the
samples are placed according to a certain optimality criterion
(i.e., moment matching [7] or shape approximation [13], [14]).
Consequently, a much smaller number of samples is sufficient
to achieve a good approximation. Third, nondeterministic
approaches usually have a certain probability of causing the
filtering algorithm to fail just because of a poor choice of
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Figure 1: Probability density functions of WN, WC and VM
distributions with identical first circular moment.

samples. This is avoided in deterministic methods. However,
deterministic methods for obtaining samples are typically more
complicated and computationally demanding than nondeter-
ministic methods.

In our previous publication [1], we have presented a
deterministic approximation for von Mises and wrapped normal
distributions with three components. This approximation is
based on matching the first circular moment. The first circular
moment is a complex number and both a measure of location
and dispersion. This approximation has already been applied to
constrained object tracking [15] as well as sensor scheduling
based on bearing-only measurements [16].

In this paper, we extend our previous approach [1] to match
both the first and the second circular moment. This yields
an approximation with five components. Even though this
approximation is somewhat more complicated, it can still be
computed in closed form and does not require approximations.

II. PREREQUISITES

In this section, we define the required probability distribu-
tions (see Fig. 1) by giving their probability density function
(pdf) and introduce the concept of circular moments.



Definition 1 (Wrapped Normal Distribution).
A wrapped normal (WN) distribution [5], [6] is given by the
pdf
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where p € [0,27) and o > 0 are parameters for center and
uncertainty respectively.

The WN distribution is obtained by wrapping a one-
dimensional Gaussian density around the unit circle. It is of
particular interest because it appears as a limit distribution on
the circle, i.e., in a circular setting, it is reasonable to assume
that noise is WN distributed. To see this, we consider i.i.d.
random variables ¢; with E(6;) = 0 and finite variance. Then

the sum
1 n
= — 0

converges to a normally distributed random variable if n — oco.
Consequently, the wrapped sum (S,, mod 27) converges to a
WN distributed random variable.

Definition 2 (Wrapped Cauchy Distribution).
The wrapped Cauchy (WC) distribution [5], [6] has the pdf
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where p € [0,2m) and v > 0.

Similar to the WN distribution, a WC distribution is obtained
by wrapping a Cauchy distribution around the circle. Unlike
the WN distribution, here it is possible to simplify the infinite
sum, yielding the closed-form expression
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Definition 3 (Von Mises Distribution).
A von Mises (VM) distribution [5], [6] is defined by the pdf

[z p, k) =
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where 11 € [0,27) and k > O are parameters for location and
concentration respectively, and Iy(-) is the modified Bessel
Sfunction of order 0.

The modified Bessel function of integer order n is given

by
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according to [17, eq. 9.6.19]. The von Mises distribution has a
similar shape as a WN distribution and is frequently used in
circular statistics.

Definition 4 (Wrapped Dirac Distribution).
A wrapped Dirac mixture (WD) distribution has the pdf
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where L is the number of components, 1,...,0r € [0,2m)
are the Dirac positions, w1, ...,wr, > 0 are the weighting
caeﬁ‘icients and § is the Dirac delta distribution [1], [16]. We
require )., w; = 1 to ensure that the WD distribution is
normahzedj

Unlike the continuous WN, WC and VM distributions, the
WD distribution is a discrete distribution consisting of a certain
number of Dirac delta components. These components can be
seen as a set of samples and can be used to approximate a
certain original density. WD densities are useful for nonlinear
estimation because they can easily be propagated through
nonlinear functions [1], just as Dirac mixture densities in R"
[9]. The WD distribution as defined above, does not contain an
infinite sum for wrapping, because wrapping a Dirac distribution
results in a single component according to

> d(a+2rk—B) =6((x—B) mod 27) .
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We still refer to the distribution as wrapped for consistency
with the WN and WC distributions.

Definition 5 (Circular Moments).
The n-th circular (or trigonometric) moment of a random
variable x with pdf f(-) is given by [5], [6]

2
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where i is the imaginary unit.

Circular moments are the circular analogon to the con-
ventional real-valued moments E(2™). Note, however, that
m, € C is a complex number. For this reason, the first
circular moment already describes both location and dispersion
of the distribution, similar to the first two conventional real-
valued moments. The argument of the complex number is
analogous to the mean whereas the absolute value describes
the concentration.

Lemma 1. The circular moments of WN, WC, VM, and WD
distributions are given by

mWN = exp(iny — n?c?/2) , (D
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Derivations can be found in [5], [6]. Here, I,(-) is the
modified Bessel function of order n [17]. The quotient of Bessel
functions can be calculated numerically with the algorithm by
[18]. Pseudo-code for this algorithm can be found in [1].

WN, WC and VM distributions are uniquely defined by their
first circular moment. However, WN, WC and VM distributions
with equal first moments significantly differ in their higher
moments. This is illustrated in Fig. 1 and Fig. 2. This difference
motivates the use of second moments in deterministic Dirac
mixture approximations.
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Figure 2: First circular moment of wrapped normal, wrapped
Cauchy, and von Mises distributions with mean zero plotted
against their second circular moment. The moments are real-
valued in this case because p = 0.

III. DETERMINISTIC APPROXIMATION

In this section, we derive deterministic Dirac approximation
methods for WN, WC, and VM distributions. Without loss
of generality, we only consider the case ¢ = 0 in order to
simplify the calculations. In the case of u # 0, the samples
are computed for 1 = 0 and subsequently shifted by p. The
moment formulas (1)-(3) simplify to mV» = exp(—n20?/2),

WC = exp(|n|y), and mYM = %{5‘7(5 In particular, we find
M)

m n

Im(mN) = Im(m/’) = Im(mYM) = 0, so there is no
imaginary part and our calculations only involve real numbers.
More general, for any circular distribution symmetric around

w =0, it holds that
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Keep in mind that we are still considering circular moments,
not conventional moments. Furthermore, this property only
holds for symmetric circular distributions and in general only
the first circular moment is guaranteed to have no imaginary
part.

A. First Circular Moment

First, we derive the approximation based on the first
moment. We have previously presented the solution with L = 3
components in [1].

1) Two Components: Obviously, one WD component is not
sufficient to match a given first moment, because a single
component only has a single degree of freedom, whereas
the first moment has two degrees of freedom. For this
reason, we propose a solution with L = 2 components, the
minimum number possible. We use symmetric WD positions

B1 = —¢, B2 = ¢, and equal weights w; = wy = % For the
first moment, we have

L
my"P = " w; exp(iB;) = cos(¢) -

j=1
Solving for ¢ results in ¢ = arccos(my).

2) Three Components: Now we extend the mixture with
two components by adding an additional component at the
mean. Consider the WD distribution with L = 3 components,
Dirac positions 1 = —¢, B2 = ¢, 53 = 0, and equal weights
W] = Wg = W3 = % For the first moment, we have

L
mlVP = ij exp(iflj) = é(Q cos(¢) +1) .
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Notice that there is no imaginary part. Now, we match with
the first moment m; of a WN or VM distribution and obtain

1

5(3m1 — 1) = cos(¢) .
————

Thus, we use ¢ = arccos(cy) to obtain a solution for the WD

distribution.

B. First Two Circular Moments

Approximation based on the first two circular moments
my and mso is somewhat more involved. We consider WD
distribution with L = 5 components and Dirac positions 3; =
—¢1, 82 = 91,83 = —d2, b1 = ¢2, 5 = 0 symmetric around
0. As we will show, moment matching does not allow a solution
with an equally weighted Dirac mixture in general. Thus, we
choose equal weights for the first four components w; = wy =
W3 = Wy = % and leave the weight ws of the component
at zero to be determined. We will later derive constraints on
the value of ws and see that ws = % i.e., equal weights for
all components, does not guarantee the existence of a solution
in all cases.

For the first moment, we have

17’[1)5
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and obtain
2
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Similarly, for the second moment, we have

1—w5
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Here, we apply the trigonometric identity cos(2
2cos?(x) — 1. After a short calculation, we obtain

1
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cz) =

(my — ws) +1 = cos?(¢1) +cos?(ga) . (6)

=:C2
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Figure 3: WD approximations for WN distributions with different values for o. In all cases, we use A = 0.5.
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Figure 4: WD approximations for VM distributions with different values for «. In all cases, we use A = 0.5.

By substituting x1 = cos(¢1), x2 = cos(¢2), we obtain a
system of two equations

€ =21+ 22,
2 2
co =x] + 25 .

We solve for x; and x5, which yields

_ 20t V4t —8(c2 — ¢a)
1 .

Obviously, there are two different solutions. Without loss of
generality, we only consider the solution

_ 20+ V4ac2 —8(c3 — ¢2)
4 )

because the other solution just swaps x; and 2, which is
equivalent for our purposes. Finally, we obtain ¢y = arccos(x1)
and ¢ = arccos(zs).

T =C —T2, T2

)
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This leaves the question of choosing the weighting coeffi-
cient ws. The previous equations can only be evaluated if the
conditions

~1<z;<1,i=1,2 and 4c} —8(c} —c3) >0

hold. These conditions can be used to find a lower and an

upper bound on ws. These bounds are

wglin _ 4m% — 4m1 — Mo =+ 1 7 (8)
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It can easily be shown that w@™ < w¥?* holds in all cases,
because 0 < my < 1. Consequently, for any 0 < A\ <1,
w5()\) — wrsnin + )\(wmax _ w15nin)

5
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is a feasible solution. Furthermore, weights ws(\) < 0 are
invalid because negative weights violate Kolmogorov’s first
axiom, i.e., the probability of any event has to be larger or
equal to zero.! The parameter A has to be chosen depending
accordingly. The range of admissible values is illustrated in
Fig. 5. It is obvious from the figure that ws = % i.e., equal
weights for all WD components, is not necessarily contained in
the region of feasible values. A good choice of the parameter
A is discussed below.

IV. PROPERTIES OF THE PROPOSED APPROXIMATION

There are several noteworthy properties of the presented
approximation method. Obviously, it maintains the first and
second circular moment of the original density. Maintaining
the first circular moment guarantees that the conversion is
reversible. If we take a WN, WC, or VM distribution and
approximate it with a WD distribution, we can recover the
original distribution by means of moment matching. In the case
of a VM distribution, we can also obtain the original distribution
by maximum likelihood estimation, which coincides with the
result from moment matching.

Approximating not just the first, but also the second moment
has the advantage of more accurately approximating the original
distribution and producing a mixture with more components.
Bear in mind that the different types of distributions differ in
their second moment, even if they are uniquely determined
by their first moment (see Fig. 2). If we use a wrapped Dirac
mixture to propagate a density through a nonlinear function,
a larger number of mixture components captures the effect of
the function more precisely.

n practice, other filters such as the UKF [7] and the randomized UKF
[12] are sometimes used with negative weights, which can give decent results,
but does not have a proper probabilistic interpretation.
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Figure 5: Feasible values for ws depending on a given concentration of the distribution.

One of the main advantages of the presented method is the
fact that for WN and WC distributions all required operations
can be evaluated in closed form. The necessary formulas (1),
(2), and (5)-(10) can be evaluated in constant time and are
easily implemented even on embedded hardware with limited
computational capabilities. In the case of a VM distribution,
the calculation of the first and second moments requires the
evaluation of Bessel functions as given in (3), but all other
steps (5)-(10) are still possible in closed form.

Examples for the approximation of both WN and VM
densities with different concentrations are depicted in Fig. 3
and Fig. 4.

The influence of the parameter A is illustrated in Fig. 6.
If \ approaches 1, more and more weight is assigned to the
Dirac component at zero whereas the other Dirac components
have less influence. If, on the other hand, )\ approaches
zero, two of the other components move towards the center
Dirac component, effectively reducing the number of Dirac
components to three. As both of these effects are undesirable,
A should not be chosen too close to either zero or one.

Lemma 2 (Condition for Positive Weights).
For WN and WC distributions, ws is positive for arbitrary
concentrations if and only if A > 0.5.

Proof: We calculate

wa(A) =Wl A(wE — i)

74m% —4dm; —mo +1
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a) WN: From (1), we obtain the relation my = m{. and
substitute accordingly.
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Because m% + 2mq + 3 > 0, we have
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and m; € (0,1) shows the claim.
b) WC: From (2), we obtain the relation mo = mf

(3 —=2\)m?2 4+ (=4 +4\)mq +1 -2
ws() = 4my —m3 —3

2\my — 2\ —3my + 1
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Because m; — 3 < 0, we have
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and my € (0,1) shows the claim.
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The same property holds for VM distributions as well,
but the proof is more tedious because of the involved Bessel
functions. For this reason, we do not give a formal proof here.
There is another interesting property of the VM distribution,
which we show in the following lemma.

Lemma 3 (Invariance of Likelihood).

In case of a VM distribution, the likelihood function
f(k|B1,y ..., Bs,wr,...ws) of the sample set does not depend
on the choice of \.
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Figure 6: WD approximations for WN distributions with different values for A. In all cases, we use ¢ = 1. The periodic boundary
is marked by a dashed line. Note that for A =~ 0 and A ~ 1 the mixture degenerates to three components.

Proof: We consider the log-likelihood
log f (%61, -

5
= Z wg log(f(Bk; 0, %))
k=1

765,’1,0]_,...’(1)5)

5
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As 22:1 wy, cos(B)) is the first moment m;, we obtain

log f(k|f1, ...

which is independent of the weights and, consequently, of A.
|

,B5,w1, .. ws) = —log(2mly(K)) + kmy

Based on these results, we suggest to use A = 0.5, as we
do in all of our examples. The value A = 0.5 is a reasonable
choice for both high and low concentrations and it guarantees
ws > 0 in all cases.

Even though we only presented an approximation for WN
and VM distributions so far, the presented approach can easily
be generalized to any circular probability distribution whose
first and second circular moment can be calculated.

V. EVALUATION

We evaluate the proposed deterministic approximation
methods by determining the error when propagating through
a nonlinear function. The weighting parameter is chosen as
A = 0.5 in all simulations. For our evaluation, we consider the
function g : S* — S! with

g(z) = x + c¢sin(z) mod 27

for some constant 0 < ¢ < 1. This function is continuous
because g(0) = lim, 2, g(x). We have ¢'(x) = 1 + ccos(x),
which is positive any for |c¢| < 1, i.e., the function g is strictly
increasing and thus injective?. Varying the value of c allows
us to control how strong the nonlinearity is.

Now, we assume a random variable A is distributed
according to a WN probability distribution f(z;u,o). We

2The proposed approach is not limited to injective or continous functions.
However, we use such a function because these properties simplify the
calculation of the true posterior density.

propagate A through the nonlinear function g and seek to
obtain a WN distribution f(x; 14,0,) that approximates the
distribution of g(A). The exact distribution is given by

o= L7 @) 0)
fg( ) g/(z) .

This distribution is not a WN distribution, but can be approxi-
mated by one. Furthermore, it can not be evaluated in closed
form because g~ !(-) can only be calculated numerically.

To approximate the true distribution with a WN distribution,
we proceed as follows. First, we deterministically approximate
the prior distribution with a WD mixture as presented in
this paper. Then we propagate all of the samples through the
nonlinear function g and finally fit a WN distribution to the
resulting WD mixture. This process is illustrated in Fig. 7.

We calculate the optimal WN approximation f"¥ of the
posterior density f; by matching the first circular moment of
fq- Then, we use the Kullback-Leibler divergence

s (g ) o

between the f°P¢ and the fitted WN to quantify the information
loss by this approximation. The results for 4 = 0 and different
values of nonlinearity c as well as uncertainty o are depicted
in Fig. 8. It can be seen that the approximation quality is
consistently higher with five rather than three or even two
WD components by a significant amount. This large increase
in accuracy easily justifies the very reasonable increase in
computational effort.

VI. CONCLUSION

We have presented a new method to deterministically
approximate circular distributions by a wrapped Dirac mixture
based on matching the first and second circular moment.
The proposed approach is applicable to a variety of circular
distributions, in particular the widely used wrapped normal
and von Mises distributions. Because all expressions can
be evaluated in closed form, the algorithm requires little
computational power and is suitable for implementation even
on embedded devices.

One might wonder if the presented algorithm can easily be
generalized to higher moments, but such a generalization is
nontrivial. This is due to the fact that preserving n moments
involves finding the roots of polynomials of degree n. Analytical
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solutions only exist for polynomials of order < 4 and are very
complicated for n = 3 and n = 4.

Future work may include the approximation of circular
probability distributions based on their shape rather than circular
moments. This allows the use of more samples, and thus, a
more accurate propagation. Furthermore, we plan to use the
presented wrapped Dirac approximation in nonlinear circular
filters.
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