
Deterministic Dirac Mixture Approximation
of Gaussian Mixtures

Igor Gilitschenski∗, Jannik Steinbring∗, Uwe D. Hanebeck∗, and Miroslav Šimandl†
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Abstract—In this work, we propose a novel way to approx-
imating mixtures of Gaussian distributions by a set of deter-
ministically chosen Dirac delta components. This approximation
is performed by adapting a method for approximating single
Gaussian distributions to the considered case. The proposed
method turns the approximation problem into an optimization
problem by minimizing a distance measure between the Gaussian
mixture and its Dirac mixture approximation. Compared to the
simple Gaussian case, the minimization criterion is much more
complex as multiple, non-standard Gaussian distributions have
to be considered.

Keywords—Deterministic sampling, shape approximation, statis-
tical distance, nonlinear propagation

I. INTRODUCTION

Approximation of a continuous probability distribution using
a discrete probability distribution is of particular interest in
a wide area of applications. It is mainly motivated by the
fact that handling discrete probability distributions is in some
cases easier, particularly when nonlinear propagation of random
variables needs to be performed. Furthermore, such approaches
can be used for approximate numerical evaluation of integrals,
for approximate inference, and for approximately solving
uncertain optimization and feasibility problems. Thus, sampling
appears in a broad area of real world applications involving state
estimation in dynamic systems, optimal control, or parameter
estimation in financial markets.

The considered problem of approximating continuous
probability distributions by a discrete counterpart is usually
addressed in one of two ways. First, random sampling can
be used to approximate continuous probability distributions
giving rise to a broad body of research in the context of Monte
Carlo methods [1], [2]. Second, deterministic approximations
are used, where some distance measure is minimized to obtain
an optimal result. These approaches appear in the literature in
the context of deterministic Dirac mixture approximation and
they are related to optimal quantization approaches. We are
particularly interested in the deterministic class of approaches,
because they offer a homogeneous coverage of the underlying
space and reproducibility of results.

The most wide-spread approach for considering nonlineari-
ties in propagation of Gaussian uncertainties was proposed in
the unscented Kalman filter (UKF) [3]. The approximation of
an n-dimensional Gaussian density is based on placing 2n+ 1
samples on the main axes of the corresponding covariance
ellipsoid around the mean. In the Gaussian Filter (GF) [4],
[5], this idea was generalized to using an arbitrary number
of samples on each axis. Deterministic sampling can also be
performed on nonlinear domains, such as the circle [6] or the
hypersphere [7].

For propagation of Gaussian quantities involving strong
nonlinearities, the use of an approximation which places all
samples on the axes might be insufficient, i.e., it is of interest
to achieve a better coverage of the state space. A semi-random
approach was proposed in [8], where random sampling from
the underlying Gaussian is replaced by sampling of several
transformed UKF sample-sets. This results in a randomized
UKF (RUKF). An entirely deterministic procedure is necessary
in order to achieve a reproducible homogeneous coverage
of the underlying space. This can be done by minimizing a
suitable distance measure as in an approach based on Localized
Cumulative Distributions (LCDs) [9], considering a numerical
integration based approach as in the Gaussian-Hermite Kalman
filter (GHKF) [10], or by using quantization techniques [11],
[12]. In our previous work, the LCD based approach was used
to approximate Gaussian densities [13], [14]. It is also possible
to consider constraints, e.g., to maintain certain moments [15].
LCD based deterministic sampling has also been applied to
linear regression Kalman filters in the Smart Sampling Kalman
Filter (S2KF) [16], and for a progressive Bayesian update step
[17]. An overview of some approximations discussed here is
shown in Fig. 1.

This paper contributes an approximation technique for
Gaussian mixtures. Their use is of particular interest for at
least two reasons. First, a mixture of Gaussian functions can
be used to approximate arbitrary functions, and thus, Gaussian
mixture distributions can be applied as an approximation [18]
of arbitrary continuous probability densities (the degree of opti-
mality can be predefined under certain regularity assumptions).
Second, Gaussian mixtures naturally arise in stochastic filtering
scenarios involving a prior given by some discrete distribution



and additive Gaussian system- or measurement noise. Thus, the
proposed method can be used for handling stochastic filtering
scenarios involving both strong nonlinearities in the system
function and a complicated noise structure.

In the following, we extend our previous work [13]
by proposing an approximation of Gaussian mixtures using
equally weighted Dirac mixtures. For optimal approximation
of a single Gaussian, it is sufficient to derive the distance
measure approximating axis-aligned densities, because applying
a suitable rotation does not break the optimality. However,
this procedure cannot be used for approximating a Gaussian
mixture with an arbitrary number of components because it
is not possible to transform all of them into an axis-aligned
form simultaneously. Thus, we compute a distance measure
for arbitrary Gaussian mixtures. Furthermore, we provide its
derivatives to speed-up numerical optimization.

The remainder of this paper is structured as follows. In
the next section, we formulate the considered problem as a
global optimization problem. The distance measure for this
optimization problem is revisited in Sec. III. It is based on a
generalization of the classical cumulative distribution function
using Localized Cumulative Distributions and an adaption of the
Cramér-von Mises criterion to obtain a new distance measure.
The resulting distance measure and its derivatives are derived for
the case of comparing Gaussian mixtures with Dirac mixtures
in Sec. IV. The proposed approach is evaluated in Sec. V
by discussing implementation issues and a comparison to a
naı̈ve approximation procedure. An outlook and possible future
directions of research conclude the work.

II. CONSIDERED PROBLEM

We consider a given n-dimensional Gaussian mixture density
fGM (x) with M components parametrized by µ

i
, Ci (where

i = 1, . . . ,M ), and respective positive weights wi (with w1 +
. . .+ wL = 1). That is, our density is given by

fGM (x) =

M∑
i=1

wi · N (x− µ
i
,Ci) ,

where N (x,C) denotes the density of a zero-mean Gaussian
distribution evaluated at x with covariance C.

The problem considered in this paper is finding an approx-
imation of the continuous density fGM (x) by a mixture of a
given number L of equally weighted Dirac delta components.
This can be thought of as finding a discrete distribution taking
one of L different values xi with equal probability 1/L such
that it optimally approximates the shape of the Gaussian mixture.
As the number of Dirac components is predefined, our task
is the positioning of the (xi)i=1,...,L in an optimal way. We
represent this Dirac mixture distribution as

fD(x) =

L∑
i=1

1

L
· δ(x− xi)

and define a distance measure D(η) between both considered
distributions, where η is used to denote a parameter vector
describing the location of the Dirac mixture components

η =
(
xT1 , . . . , x

T
L

)T
.

The resulting optimization problem is given as

η∗ = arg min
η

D(η) . (1)
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Figure 1. Different sample based approximation approaches for Gaussian
densities.

Thus, a distance measure is needed for comparing continuous
probability distributions and Dirac mixtures.

III. A DISTANCE MEASURE FOR DIRAC MIXTURE
APPROXIMATION

The approach considered in this work yields a shape approx-
imation of the underlying distribution, i.e., the positions of
the individual components shall reflect the shape of the ap-
proximated distribution. Thus, the considered distance measure
needs to compare local probability masses. Achieving this goal
is rather difficult when using cumulative distribution functions
(CDF), which are not symmetric and have a hard boundary
for considering the probability mass. However, the CDF can
be modified in order to put emphasis on local probability
mass in a predefined way. This modification, denoted as the
Localized Cumulative Distribution (LCD), can be used to define
a suitable distance measure for probability distributions making
a comparison between discrete and continuous distributions
possible. Thus, in this section we revisit some definitions from
[13].



Definition 1. Consider a probability density function f(x)
defined on some n-dimensional domain Rn. Then, its Localized
Cumulative Distribution (LCD) is defined as

F (m, b) =

∫
Rn

f(x) ·K(x−m, b) dx ,

where b ∈ Rn+ and K(·, ·) is symmetric and integrable.

The basic idea of this very general definition is best
described by taking a look at its parameters and their natural
meaning. Basically, m describes the location around which the
probability mass is considered. The parameter b parametrizes
the considered region around m.

Gaussian kernels seem a natural choice in the considered
scenario, because of several convenient properties. Particularly,
the fact that the product of two Gaussian densities yields another
(unnormalized) Gaussian density simplifies many computations.
Thus, in this work isotropic Gaussian kernels are used. That is,
the size of the kernel is described by a scalar value b ∈ R+.
The resulting kernel is given as

K(x, b) = exp

(
−1

2
xT (C̃−1

b )x

)
,

where C̃b = b2 I.

In a univariate setting, the Cramér-von Mises criterion [19]
can be used for comparing two probability distributions. A more
general approach is desired for the purpose of our application.
First, it is necessary to consider multivariate densities in
order to approximate arbitrary Gaussian mixtures. Second, we
require symmetry, because it follows the intuition for a distance
measure. Using Localized Cumulative Distributions gives rise to
a straightforward definition of the proposed distance measure.

Definition 2 (Modified Cramér-von Mises Criterion). The
modified Cramér-von Mises criterion D between two LCDs
F̃ (m, b) and F (m, b) using a suitable weighting function w(b)
is given by

D =

∫
R+

w(b)

∫
Rn

(
F̃ (m, b)− F (m, b)

)2
dm db . (2)

This distance measure can now be used directly for approx-
imation of probability distributions. The use of LCDs makes a
direct comparison between discrete and continuous distributions
possible, which is infeasible for information theoretic measures,
such as the Kulback-Leibler divergence [20], or the Rényi
divergence [21].

IV. APPROXIMATION OF GAUSSIAN MIXTURES

In this section, the distance measure (2) is derived for the
case of comparing arbitrary Gaussian mixtures with an arbitrary
discrete probability density defined on the same domain. We
show that our choice of the Kernel function K(·, ·) results
in a distance measure, which can be evaluated without use
of multidimensional integration. Furthermore, we provide a
similar derivation for the gradient of the proposed distance
measure.

First, we take a look at the LCDs of the considered densities.
The derivation of the LCD for a discrete probability distribution

is straightforward. For the equally weighted case, it was already
given in [13] by

FD(m, b, η) =
1

L

L∑
i=1

exp

(
−1

2

||xi −m||
2
2

b2

)
,

where xi denote the components of the considered discrete
density.

The LCD for the Gaussian mixture involves multidimen-
sional integration. It is given as

FGM (m, b) =

∫
Rn

fGM (x) ·K(x−m, b) dx .

In the following lemma, we obtain a more convenient repre-
sentation for this LCD.

Lemma 1. The LCD of a Gaussian mixture fGM (x) as defined
above is given by

FGM (m, b) =

M∑
i=1

(2π)n/2bn wiN (µ
i
−m,Ci + C̃b) .

A proof is given in Appendix A.

Now, we can perform the computation of the actual distance
measure

D(η) =

∫
R+

w(b)

∫
Rn

(
FGM (m, b)− FD(m, b, η)

)2
dm db .

This, is where we extend our earlier work. A naı̈ve approach
would be avoiding this computation by performing component-
wise approximation. As will be shown in the evaluation, this
unfortunately yields suboptimal results. Thus, the following
lemma is motivated by the need for a direct approximation
in these cases. It is a generalization of Theorem III.1 from
[13], where a similar result was formulated for an axis-aligned
Gaussian.

Lemma 2. Consider the LCD of a Gaussian mixture
FGM (m, b), the LCD of an equally weighted discrete probabil-
ity distribution (Dirac mixture) FD(m, b), and the weighting
function

w(b) =

{
bn−1 , if 0 ≤ b ≤ bmax
0 , otherwise

.

Then, the corresponding modified Cramér-von Mises criterion
D can be computed by

D(η) =

∫ bmax

0

(
P1 − 2P2(η) + P3(η)

)
db , (3)

where

P1 =(2π)nbn+1

·
M∑
i=1

M∑
j=1

wiwj N (mi −mj ,Ci + 2C̃b +Cj) ,

P2(η) =(2π)nbn+1
M∑
i=1

L∑
j=1

wi
L
N (µ

i
− xj ,Ci + 2C̃b) ,

P3(η) =
πn/2b

L2

L∑
i=1

L∑
j=1

exp

(
−1

2

∣∣∣∣xi − xj∣∣∣∣22
2b2

)
.
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(a) Initial samples for the Optimization procedure obtained from sampling each Gaussian component individually using random sampling.
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(b) Optimized samples obtained as a result of the Optimization procedure proposed in this paper.
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(c) Suboptimal samples obtained from sampling each Gaussian component individually using the LCD approach.

Figure 2. Initial samples (red), optimized samples (blue), and suboptimal samples (green) for approximation of three different Gaussian mixtures (represented by
the covariance ellipsoids of their components).

A proof is given in Appendix B.

Computation of the distance measure given in the previous
lemma still involves an integral (over the kernel width b),
which needs to be evaluated numerically. Even simplifications
as discussed in [14] make use of numerical algorithms or
approximations to compute the exponential integral.

This results in a high computational burden, when this
distance measure is used as an optimality measure for ap-
proximating a Gaussian mixture by a Dirac mixture, because
numerical integration happens in every iteration of the optimizer.
Thus, it is of particular interest to speed-up the numerical
optimization procedure, by reducing the number of required
iterations. This can be done by providing a gradient of the
proposed distance measure. The following lemma, once again,
generalizes our earlier results from [13].

Lemma 3. The derivative ∂D

∂x
(j)
i

is given as

Gj,i = −2Gaj,i +Gbj,i ,

where

Gaj,i =

∫ bmax

0

M∑
m=1

(2π)n wm
L

n∑
k=1

F b,mj,k (µ(k)
m − x

(k)
i )

· bn+1N (µ
m
− xi,Cm + 2C̃b) db ,

and

Gbj,i =
−πn/2

L2

L∑
k=1

(x
(j)
i − x

(j)
k )

·
∫ bmax

0

1

b
exp

(
−1

2

||xi − xk||
2
2

2b2

)
db ,

where F b,mj,k is the entry in the j-th row and k-th column of
the matrix (Cm + 2C̃b)

−1.

A proof is given in Appendix B3.
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Figure 3. Evaluation of propagation through a nonlinear system function.

The optimization problem for finding an optimal approxima-
tion of Gaussian mixtures still suffers from strong nonlinearity
involving local minima, because of the multiple modes in the
Gaussian mixture. Consequently, a good choice of starting
values is of particular importance. However, it is sufficient to
ensure, that each Gaussian component is assigned a number of
samples corresponding to its weight. Thus, an approximation
of a Gaussian mixture with M components by a Dirac mixture
with L components can be performed in three steps. First, each
component of the Gaussian mixture is assigned a number Li
of Dirac components (i = 1, . . . ,M and L = L1 + . . .+ LM )
proportional to its probability weight wi. Second, we sample
Li random samples from each Gaussian mixture component i.
Finally, an optimizer is used minimizing (3) in order to obtain
an approximation of the Gaussian mixture.

V. EVALUATION

It is of particular interest to compare the proposed method
to simply approximating each component of the Gaussian
individually or using random sampling. In Fig. 2, we show three
types of approximations for three different Gaussian mixtures.
The first approximation is based on a random approximation of
each component individually. The number of random samples is
chosen according to the weight of each component. The second
approximation uses the proposed method (in which the random
samples serve as a starting value and bmax = 10). Finally, the
third approximation uses a suboptimal approach, where each
Gaussian mixture component is approximated individually. This
is done by using a precomputed Dirac mixture approximation
of the standard Gaussian, which is transformed (by using the
matrix square-root of each components covariance) in order
to match the covariance of each Gaussian component. The
presented results follow the expectation, that Gaussian mixture
components which do not have a strong overlap with other
components are treated as if they were individual Gaussians.
For the actual optimization step computing the placement of the
Dirac delta components, we used the fminunc procedure from
Matlab 2014a with a quasi-Newton algorithm and a termination
tolerance on the function value of 1e− 12. That is, no moment
constraints were imposed on the resulting approximation.

Probably the most common application of the proposed
approximation is the approximate propagation of uncertainty
through nonlinear transformations. Thus, it is of interest to
investigate the proposed method in an uncertainty propagation
scenario involving overlapping and closely located Gaussian
mixture components. In our scenario, a two-dimensional
Gaussian mixture will be propagated through the nonlinear

function

g(x) = x(1) · cos(x(2)) .

This example is motivated by the general fact that consideration
of trigonometric functions is of particular interest in different
scenarios (e.g., when transforming uncertain positions between
different types of coordinate systems). The considered Gaussian
mixture consists of three equally-weighted components with
respective means µ

1
= (1.5, 0)T , µ

2
= (1.5, 0)T , and µ

3
=

(−0.5, 2)T . The covariance matrices in each component were
given as

C1 =

(
2 0.5
0.5 1

)
, C2 =

(
0.5 0.9
0.9 3

)
, C3 =

(
4 0
0 0.3

)
.

Furthermore, we used different initialization values for the
actual optimization procedure in order to account for possible
local minima. The suboptimal approximation discussed above
and random sampling the Gaussian mixture were used for
comparison. The entire simulation was performed using 1000
runs. Ground truth was obtained by random sampling using
108 samples. The results are shown in Fig. 3 for a different
number of approximated / sampled Dirac delta components.
As expected, random sampling has the worst performance.
The proposed approximation yields superior results over a
suboptimal componentwise approach. This result comes at the
price of higher computational complexity. However, particularly
for shape approximation involving Gaussian mixtures with
strong overlap, the proposed approach yields a significantly
better outcome.

VI. CONCLUSION

In this paper, we proposed a shape approximation for Gaussian
mixture distributions by a Dirac mixture. This generalizes
our earlier work [13] by providing a homogeneous coverage
of the considered Gaussian mixture densities. The proposed
method is superior over existing component-wise deterministic
approximations, because these approaches yield poor results
for strongly overlapping Gaussian mixture components.

Our method is based on deriving a distance measure
ensuring shape approximation of the underlying Gaussian
mixture distribution. The resulting method is of particular
interest for a wide scope of applications, because Gaussian
mixtures can be used to approximate other continuous distri-
butions. Thus, whenever an efficient approximation of other
densities by Gaussian mixtures is possible, this Gaussian
mixture approximation can be used as an intermediate step
in approximating the original distribution by a Dirac mixture.
Furthermore, Gaussian mixtures arise naturally in stochastic
filtering scenarios involving a discrete prior distribution and
additive system noise.

The choice of an approximation technique in scenarios
involving Gaussian mixtures is highly dependent on precision
and performance requirements. A naı̈ve approach approximating
each mixture component using the unscented transform might
be sufficient for some applications. Higher precision can be
achieved by precomputing the proposed approximation for a
standard Gaussian and applying the Mahalanobis transform for
each component individually. For filtering scenarios where the
noise term is distributed according to the same Gaussian mixture
in each time step, the entire approximation of the Gaussian
mixture can also be computed in advance. Componentwise
approximations perform particularly bad in scenarios involving



strong overlap of the involved mixture components which serves
as an additional motivation for using the proposed approach.

Thus, our future work will involve investigating more
efficient approximation and optimization procedures and an
in-depth analysis of different types of possible kernels. Fur-
thermore, we are interested in deriving analytical results on
approximation quality with respect to the number of involved
Dirac delta components.
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APPENDIX

A. Proof of Lemma 1

We can compute directly.

FGM (m, b) =

∫
Rn

fGM (x) ·K(x−m, b) dx

=

M∑
i=0

ωi

∫
Rn

f(x, µi,Ci) ·K(x−m, b) dx

=

M∑
i=0

ωi

∫
Rn

N (x− µ
i
,Ci)

· abN (x−m, C̃b) dx ,

where ab =
√
det(2πC̃b) = (2π)n/2 bn. Now, we can use

the fact that the product of two Gaussian densities is itself a
(rescaled) Gaussian density.

FGM (m, b) =

M∑
i=0

ωi

∫
Rn

ci,bN (x− µ
i,b
, Ĉi,b) dx

=

M∑
i=0

ωi ci,b ,

where Ĉi,b = (C−1
i +C−1

b )−1, µ
i,b

= Ĉi,b(C
−1
i µ

i
+C−1

b m),
and ci,b = abN (µ

i
−m,Ci +Cb).

B. Proof of Lemma 2

1) Computation of P1:

P1 =

∫
Rn

FGM (m, b)2 dm

=(2π)nb2n
M∑
i=1

M∑
j=1

wiwj

∫
Rn

N (µ
i
−m,Ci + C̃b)

· N (µ
j
−m,Cj + C̃b) dm

Once again, we make use of the fact that multiplication of
Gaussian densities yields a rescaled Gaussian density. This
results into

P1 = (2π)nb2n
M∑
i=1

M∑
j=1

wiwj N (µ
i
− µ

j
,Ci + 2C̃b +Cj) .

2) Computation of P2(η): First, we note that the LCD of an
equal weighted discrete probability distribution can be rewritten
as

FD(m, b, η) =
1

L

L∑
i=1

(2π)n/2bnN (xi −m, C̃b) .

Now, we compute directly

P2(η) =

∫
Rn

FGM (m, b)FD(m, b) dm

=(2π)nb2n
M∑
i=1

L∑
j=1

wi
L

∫
Rn

N (µ
i
−m,Ci + C̃b)

· N (xj −m, C̃b) dm .

After applying the same argument as in the computation of P1,
we obtain

P2(η) = (2π)nb2n
M∑
i=1

L∑
j=1

wi
L
N (µ

i
− xj ,Ci + 2C̃b) .

3) Computation of P3(η): P3(η) does not depend on the
LCD of the Gaussian Mixture. Thus, it is the same as in our
previous work. Its computation is derived in the same way as
in [13].

First, we note that no xi appears in D1. Thus, we have
δD1/δx

(j)
i = 0. Thus Gai,j and Gbi,j represent the derivatives

δ − 2D2/δx
(j)
i and δD3/δx

(j)
i respectively.

4) Computation of Gaj,i:

Gaj,i =
δ

δx
(j)
i

∫
R+

w(b) (2π)nb2n

·
M∑
m=1

L∑
l=1

wm
L
N (µ

m
− xl,Cm + 2C̃b) db

=

M∑
m=1

L∑
l=1

(2π)n wm
L

·
∫ bmax

0

bn+1
δN (µ

m
− xl,Cm + 2C̃b)

δx
(j)
i

db

Differentiation removes all terms, where l 6= i, and thus we
have

Gaj,i =

M∑
m=1

(2π)n wm
L

·
∫ bmax

0

bn+1
δN (µ

m
− xi,Cm + 2C̃b)

δx
(j)
i︸ ︷︷ ︸

=:Ab,m
j,i

db .

The last equality is due to the fact that x(j)i does not appear for
the summands where l 6= i. In order to compute the derivative
of the Gaussian density Ab,mj,i , we make use of the fact that the



covariance matrix (and its inverse) is symmetric. Furthermore,
we define Fb,m = (Cm + 2C̃b)

−1. This yields

Ab,mj,i =
δN (µ

m
− xi,Cm + 2C̃b)

δx
(j)
i

=− 1

2
·

∂tr
(
(µ
m
− xi)TFb,m(µ

m
− xi)

)
∂x

(j)
i


· N (µ

m
− xi,Cm + 2Cb) .

Now, we can use the fact that the trace is invariant under cyclic
permutations. This gives us

Ab,mj,i =− 1

2
·

∂tr
(
Fb,m(µ

m
− xi)(µm − xi)

T
)

∂x
(j)
i


· N (µ

m
− xi,Cm + 2C̃b)

=− 1

2
·

∂
(∑n

p,k=1 F
b,m
p,k (µ(k)

m
− x(k)i )(µ(p)

m
− x(p)i )

)
∂x

(j)
i


· N (µ

m
− xi,Cm + 2C̃b) ,

where F b,mp,k denotes the entry in the p-th row and k-th column
of Fb,m. Performing the derivation and taking symmetry of
Fb,m into account yields

Ab,mj,i =

n∑
k=1

F b,mj,k (µ(k)
m − x

(k)
i )

· N (µ
m
− xi,Cm + 2C̃b) .

Using this result, we finally obtain

Gaj,i =

∫ bmax

0

M∑
m=1

(2π)n wm
L

n∑
k=1

F b,mj,k (µ(k)
m − x

(k)
i )

· bn+1N (µ
m
− xi,Cm + 2C̃b) db .

5) Computation of Gbj,i: The value of Gbj,i depends only
on the LCD of the discrete distribution. Thus, it is the same as
in our earlier results on approximating axis-aligned or isotropic
Gaussians. A proof is given in [13].
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