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Abstract—This work proposes a novel way to represent uncer-
tainty on the Lie group of rigid-body motions in the plane. This is
achieved by using dual quaternions for representation of a planar
rigid-body motion and proposing a probability distribution from
the exponential family of distributions that inherently respects the
underlying structure of the representation. This is particularly
beneficial in scenarios involving strong measurement noise. A
relationship between the newly proposed distributional model
and the Bingham distribution is discussed. The presented results
involve formulas for computation of the normalization constant,
the mode, parameter estimation techniques, and a closed-form
Bayesian measurement fusion.

Keywords—Pose estimation, dual quaternions, Bingham distri-
bution, directional statistics, SE(2), Lie groups, probability theory

I. INTRODUCTION

Estimation of a rigid-body motion, i.e., simultaneous estimation
of translation and rotation presents a major problem in many
applications involving robotic perception, processing of sensor
data for mixed and augmented reality applications, and naviga-
tion. This problem is particularly challenging for two reasons.
First, it has a nonlinear structure because the values are defined
on an inherently nonlinear domain. The cases of particular
practical interest are the manifolds of rigid-body motions in the
plane SE(2) and in three-dimensional space SE(3). Second,
there is no canonical way to describe dependencies between
position and orientation.

These problems are negligible in scenarios involving strong
prior knowledge or high-precision sensors. Here, one can easily
approximate arising nonlinearities involved in the estimation
problem by linear models making use of the locally linear
structure of the considered manifolds. Thus, usually two
strategies are used to address this estimation scenario. First,
costly high-precision sensors are deployed to avoid strong
measurement noise. Second, the classical Kalman filter is
modified to consider nonlinear system models. The most famous
adaptations involve the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) [1].

These adaptions are usually based on a more intelligent
propagation technique (such as the unscented transform) and a
sound state representation. Most of these approaches maintain
a Gaussian assumption because of its convenient properties and
natural appearance as a limit distribution. However, as the noises
become larger, the errors introduced by this assumption become
non-negligible. The reasons for this involve the fact that the
Gaussian distribution does not capture the nonlinear structure
of the underlying manifold. Recently, a number of authors have
developed recursive estimation algorithms which use directional
probability distributions instead. The proposed algorithms
address angular [2], [3] and orientation estimation [4], [5]
problems. These approaches show benefits over estimation
techniques which maintain a Gaussian assumption.

Our earlier works on estimating angular and orientational
quantities build upon some of the numerous probability dis-
tributions defined on periodic manifolds such as the wrapped
normal distribution, the von Mises distribution [6], or the
Bingham distribution [7]. One of the approaches using dual
quaternions for representing rigid body motions was presented
in [8]. Dual quaternions are a convenient representation because
they generalize the idea of rotations represented by quaternions
to a representation of the entire rigid-body transformation.
However, this approach is based on an iterated EKF in order to
account for the fact that the Gaussian assumption is inherently
wrong and might yield poor results.

Combination of angular and linear quantities is of particular
interest in robotic perception and inertial navigation systems.
However, only a very limited number of approaches considers
these quantities simultaneously in the underlying probability dis-
tribution. Two approaches are particularly notable for estimation
of rigid transformations. First, the projected Gaussian approach
proposed by Feiten et al. [9], [10], [11]. It is based on projecting
parts of a higher dimensional Gaussian random vector to the unit
sphere in an intelligent way. Furthermore, dual quaternions are
used for state space representation. Unfortunately, this approach
has the drawback of using an approximation in the Bayesian
update step for a typical dynamic state estimation scenario.
In [12], an approach related to the Bingham distribution was



used for estimating a “mean” rigid-body transformation. It
maintains some properties of the Bingham distribution and
uses a combination of orthogonal matrices and vectors for
representing uncertain orientation and translation respectively.
However, it is not clear whether this approach makes a closed-
form Bayes update possible.

A. Main Contribution

In this work, we propose a novel probability distribution
which is capable of capturing the underlying structure of
the manifold of planar rigid transformations SE(2). This is
achieved through the use of dual quaternions (restricted to
planar transformations). Thus, there is no need to maintain an
entire matrix to describe the actual transformation. Furthermore,
choosing dual quaternions for our formulation simplifies a future
generalization to the SE(3) case. Similar to the Bingham distri-
bution and its natural use for representing uncertain orientations
represented by quaternions, the proposed distribution involves
antipodal symmetry and makes closed form Bayesian inference
in classical measurement update and fusion scenarios possible.
Furthermore, we show that the Bingham distribution appears as
a marginal distribution for the spherical part of our proposed
model and describe the relationship between the modes and
normalization constant of both distributions.

The remainder of this paper is structured as follows. In the
next section, we introduce dual quaternions and discuss their
convenience for composing and representing rigid transforma-
tions. Our new distributional model is presented in Sec. III,
where a parameter estimation technique is proposed and the
mode of the distribution is discussed. In Sec. IV, we show how
the distribution can be applied to representing uncertainty of
positions and orientations in the plane. Furthermore, a closed-
form Bayesian inference procedure is derived for a typical
estimation and fusion scenario. The work is concluded in
Sec. V.

II. DUAL QUATERNIONS FOR REPRESENTING
RIGID BODY MOTIONS

Unit quaternions offer a convenient way of representing and
combining orientations. The latter is done by quaternion multi-
plication. Other operations from the skew field of quaternions
obtain in this context a natural geometrical interpretation, e.g.,
multiplicative inversion represents the inverse of a rotation and
exponentiation is applied to derive an interpolation algorithm
[13].

This concept is generalized by dual quaternions of unit
magnitude making the representation of translations possible
and offering a natural way for composition of several translation
and rotation sequences by dual quaternion multiplication. Appli-
cations of this concept cover the field of robotics and computer
graphics such as [14], [15]. In the following, dual quaternions
are revisited and their application to representation of rigid
translations of the SE(3) is discussed. The consideration of
planar motions results as a natural special case.

A. Dual Quaternions

Understanding of dual numbers and plain quaternions is
helpful in order to understand the concept of dual quaternions.

In this work, the skew-field of quaternions will be denoted by
H. First, consider the quaternion q ∈ H

q = q1 + q2i+ q3j + q4k ,

which has the typical basis elements i, j, k. q will be described
using the vector representation (q1, q2, q3, q4)

> whenever it
is more convenient. As described above, we are particularly
interested in quaternion multiplication, because it can be used
to apply a sequence of rotation operations. For two quaternions
a,b ∈ H, it is defined as

a · b =

a1b1 − a2b2 − a3b3 − a4b4a1b2 + a2b1 + a3b4 − a4b3
a1b3 − a2b4 + a3b1 + a4b2
a1b4 + a2b3 + a3b2 − a4b1

 .

The inverse of a unit quaternion is obtained by quaternion
conjugation, i.e., by changing the sign in front of each imaginary
basis element. Thus q−1 = q∗ = (q1,−q2,−q3,−q4)>.

The second concept necessary to define dual quaternions
are dual numbers, which can be seen as an extension of real
numbers. Similarly to complex numbers (which introduce the
imaginary unit i), dual numbers are defined by introducing a
new element. It is usually denoted by ε and characterized by
its nilpotency property ε2 = 0. Thus, a dual number is given
by

a+ εb (1)

for a, b ∈ R. The multiplication of two dual numbers is
straightforward

(a1 + εb1)(a2 + εb2) = a1a2 + ε(b1a2 + a1b2) . (2)

Dual quaternions (denoted by HD) are a quaternion equivalent
to dual numbers. Thus, they are defined by replacing real
numbers a, b in (1) with quaternions q1,q2 ∈ H. That is, a
dual quaternion dq can be written as

dq = q1 + εq2 .

Multiplication of dual quaternions works in the same way as
multiplication of dual numbers (2) except for the fact that
multiplication of dual quaternions is not commutative because
quaternion multiplication is not commutative. Thus, the product
of two dual quaternions da,db ∈ HD is given by

da · db =(a1 + εa2) · (b1 + εb2)

=a1 · b1 + ε(a1 · b2 + a2 · b1) .

Several different types of conjugation exists for dual quaternions.
We are particularly interested in conjugating a dual quaternion
by conjugating both its quaternions individually. Thus, we
define the conjugated dual quaternion as dq∗ := q∗1 + εq∗2,
where q∗i means the quaternion conjugation.

The magnitude of a dual quaternion is given by

||dq|| =
√

dq · dq∗ .

Dual quaternions with magnitude 1 are of our particular interest.
They are also known as unit dual quaternions. The multiplicative
inverse of such a unit dual quaternion q1 + εq2 is given by
q∗1 + εq∗2. It is important to note, that every unit quaternion
(with a zero dual part) is itself a unit dual quaternion.



B. Representation of Rigid Body Motions

Quaternions can be used to represent orientation in R3. A
rotation around the unit-length axis (x1, x2, x3)

> with angle
α is represented by the quaternion

ra = cos
(α
2

)
+ sin

(α
2

)
(x1i+ x2j + x3k) .

A more in-depth discussion of quaternions for orientation
representation can be found in [16]. In a dual quaternion a
pure rotation is represented by a quaternion where the non-
dual part is the unit quaternion representing the rotation and
the dual part is zero, i.e., dr = ra + ε 0. Thus, classical unit
quaternions are a special case of orientation representation
using dual quaternions. A translation t = (tx, ty, tz)

> ∈ R3 is
represented by the dual quaternion

dt =t1 + ε t2

=1 + ε
1

2
(txi+ tyj + tzk) .

It is important to note, that the quaternion in the dual
part is not necessarily of unit length, and thus there is no
restriction imposed on the translation. However, the resulting
dual quaternion is still a unit dual quaternion with respect
to the definition given above. A composition of rotation and
orientation is represented by dual quaternion multiplication. The
inverse of this transformation is simply obtained by conjugating
the dual quaternion as described above. It is important to note
that — similarly to the purely rotational case — the dual
quaternions dq and −dq represent the same position and
orientation.

In order to apply a rigid body transform represented by
a dual quaternion dq to a given vector x = (x1, x2, x3), we
represent the vector as a dual quaternion

dx = 1 + ε(x1i+ x2j + x3k) .

Now the transformed vector is represented by dq · dx · dq∗

(where dq
∗

denotes conjugation of each involved quaternion
and dual conjugation, i.e., changing the sign in front of the dual
unit ε). A consequence of this operation is that there is no need
for the factor 1/2 in the dual part of dx. Further discussion
can be found in [15].

III. A NEW DISTRIBUTION MODEL

An antipodally symmetric distribution is required to account
for the fact that dual quaternions dq and −dq represent the
same rigid transformation. In the case of quaternions, this can
be simply done by using the Bingham distribution, which
is obtained by restricting the random variables of a zero
mean Gaussian distribution to unit length. A similar strategy
can be used to obtain a probability distribution for unit dual
quaternions. In the following, S1 is used to denote the unit
circle in R2. Now, we can define the proposed distribution.

Definition 1. A random vector x ∈ S1 × R2 is distributed
according to the proposed distribution if its probability density
function (p.d.f.) is given by

f(x) =
1

N(C)
exp(x>Cx) ,

Figure 1. Probability density function of the Bingham distribution, which
is the marginal distribution for the first two components of the proposed
distribution model.

where C is a suitable symmetric parameter matrix and N(C)
a corresponding normalization constant.

We can decompose x into two components x = (x>s , x
>
t )
>

with xs ∈ S1 ⊂ R2 and xt ∈ R2. Later, we will see that xs
can be interpreted as the non-dual part of a unit dual quaternion
and xt will be interpreted as its dual part. This is possible,
when we consider dual quaternions restricted to representing a
rigid-body motion in the plane (otherwise a higher dimensional
probability distribution would be needed). Furthermore, the
normalization constant is given by

N(C) =

∫
S1

∫
R2

exp

((
xs
xt

)>
C

(
xs
xt

))
dxt dxs .

Due to the symmetry of C, it can be represented as

C =

(
C1 C>2
C2 C3

)
,

with Ci ∈ R2×2. This notation can be used for deriving a more
convenient representation of the density function, and to make
clear which choices of the matrices Ci are feasible.

Lemma 2. The proposed probability distribution can be
represented by

f(x) =
1

N(C)
exp

(
x>s (C1 −C>2 C

−1
3 C2)xs

+ (xt −Axs)
>C3(xt −Axs)

)
,

(3)

where A = −C−13 C2. This is a well-defined probability
density function for symmetric C1, arbitrary C2 and symmetric
negative definite C3.

A proof is given in Appendix A.

A. Parameter Estimation

For parameter estimation, we adapt the methodology out-
lined in [12] to our distribution. This is made clear by formu-
lating a relationship of the proposed distribution model with
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(a) Original samples before transformation.

−25 −20 −15 −10 −5 0

−10

−5

0

5

10

x→

−10 −5 0 5 10 15

−10

−5

0

5

10

x→

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

x→

−15 −10 −5

−4

−2

0

2

4

x→

(b) Translation and rotation represented by these samples.

Figure 2. Illustration of several different random sample sets and the rotation / translation combination represented by these random samples as obtained using
Algorithm 1. Each sample is represented by an arrow. The position of the arrow represents the translational part and its direction represents the angular part.
Modes of the underlying distributions are shown as red dots. Due to antipodal symmetry, both modes of a considered distribution represent the same rotation.
Thus, there is no such symmetry in the transformed samples.

the Bingham distribution, which is an antipodally symmetric
distribution on the hypersphere. Its p.d.f. is given by

f(x) =
1

F (Z)
exp

(
x>MZM> x

)
,

where Z is a diagonal matrix, M is an orthogonal matrix, and
x ∈ Sn. This parametrization is the same as in our previous
work [4]. The matrix M is left out of the normalization constant,
because it can be shown that F (MZM>) = F (Z). A typical
density of a Bingham distribution on S1 is shown in Fig. 1. Its
role as a marginal distribution of our proposed model is made
precise by the following lemma.

Lemma 3. Let x = (xs, xt) be a random variable following
the distribution defined above. Then, the Bingham distribution
is the marginal distribution of xs with parameter matrices M,Z
being the eigendecomposition of the Schur complement of C3

in C, i.e., C1 −C>2 C
−1
3 C2.

A proof is given in Appendix B.

This result gives us the first part of the parameter estimation
procedure. Using the approach discussed in [3] (or any other
approach for estimating parameters of the Bingham distribution),
we can estimate M, Z and thus we obtain an estimate of
C1 −C>2 C

−1
3 C2.

For the further derivation of the estimation procedure, it is
important to note that N (−Axs,− 1

2C
−1
3 ) is the conditional

distribution of xt given a fixed xs. This is a simple consequence
of the representation (3). That is, the unconstrained part
follows a Gaussian distribution, with an uncertain transformed
Bingham-distributed mean. Estimation of A and − 1

2C
−1
3 is

done using multivariate linear regression as described in [17].

These estimates can be used to reconstruct estimates of the
original parameter matrices directly. Furthermore, we can derive
a mode of the distribution, which is given by m = (m>r ,m

>
t )
>,

where mr ∈ S1 is the normalized eigenvector corresponding to
the largest eigenvalue of C1 −C>2 C

−1
3 C2, and mt = Ams.

Because of antipodal symmetry −m is also a mode of the
distribution.

B. Normalization Constant

Computing the normalization constant N(C) is not straight-
forward, as it involves an integration over S1×R2. Fortunately,
we can reduce this computation to computing a Bingham
normalization constant.

Lemma 4. The normalization constant of the proposed distri-
bution can be rewritten as

N(C) =
2π
√

det
(
− 1

2C
−1
3

)
F (C1 −C>2 C

−1
3 C2)

,

where F (·) is the normalization constant of a Bingham
distribution.

A proof is given in Appendix C. Unfortunately, the computa-
tion of a Bingham normalization constant is not straight forward
either. However, there are several approaches addressing this
problem, which are based on precomputed lookup tables
[18], saddlepoint approximations [19], and holonomic gradient
descent [20].

IV. UNCERTAIN RIGID-BODY MOTIONS IN THE PLANE

A naı̈ve approach would be to use the distribution presented
in the previous section to represent an uncertain motion in the



Algorithm 1: Translation and rotation from unit dual
quaternion

Input: Dual quaternion wdq = (w1, w2, w3, w4)
T

Output: Rotation angle ϕ and translation vector
t = (t1, t2)

/* Compute rotation angle */
ϕ← 2 · atan2(w2, w1)

/* Compute translation */
t1 ← 2 · (w1 w3 − w2 w4)
t2 ← 2 · (w2 w3 + w1 w4)

plane by using the first two entries to represent the rotation and
the second two entries to represent a subsequent translation.
Unfortunately, this naı̈ve approach has several drawbacks. First,
x and −x would always have the same probability mass (even
if it is not desired that the positions xt and −xt have the
same probability mass). Second, it would not be possible to
represent a mean for the position. Thus, we use dual quaternions
(restricted to rotation and translation in the plane) for a natural
representation of uncertainty.

A. Representation of Uncertain Motions in the Plane

Rotation in the (x, y)-plane can be represented by the dual
quaternion

dr =
(
cos
(α
2

)
+ 0 · i+ 0 · j + sin

(α
2

)
· k
)
+ ε · 0 .

A translation (t1, t2) in the (x, y)-plane can be represented by
the dual quaternion

dt = 1 +
ε

2
(0 + t1 · i+ t2 · j + 0 · k) .

Thus, a combination of rotation and translation (where the
rotation is performed first) is given by

dt · dr =
(
cos
(α
2

)
+ sin

(α
2

)
· k
)

+
ε

2

[(
cos
(α
2

)
t1 + sin

(α
2

)
t2

)
· i

+
(
− sin

(α
2

)
t1 + cos

(α
2

)
t2

)
· j

]
=:d1 + d2 k + ε(d3 i+ d4 j)

It is important to note that, in this planar setting, the dual part
of the dual quaternion dq := qa + εqb has a zero real and
a zero k component. Furthermore, the non-dual part always
keeps a zero i and a zero j component. Thus, we require only
four values to represent our rigid body motion on the plane.
This gives us a new way of interpretation of a random vector
following the proposed distribution. Its first two entries are
interpreted as the real and the k component of the non-dual
part of dq and its last two entries are interpreted as the i and
j component of the dual part of dq. That is

ddq = (d1, d2, d3, d4)
> .

A way to recover the original rotation angle and translation
is presented in Algorithm 1. This algorithm assumes that the
translation is performed after the rotation. Thus, its returned
values can be used in a straight forward manner for constructing
a homogeneous matrix of an affine transformation. In Fig. 2,
we apply this algorithm to several sets of random samples from
the proposed distribution. Consequently, we obtain the rigid
transformation represented by these samples.

It is also possible to define a matrix representation of
the dual quaternions involved that obeys the corresponding
operations. The derivation is based on combining matrix
representations of dual numbers with matrix representations of
quaternions, and then leaving out columns and rows unnecessary
for the planar case. This results in

Ddq =

 w1 w2 0 0
−w2 w1 0 0
−w3 w4 w1 −w2

−w4 −w3 w2 w1

 .

This matrix representation has several beautiful properties such
as Dda·db = Dda ·Ddb and thus Ddq−1 = D−1dq . Furthermore,
we have that det(Ddq) = 1, because Ddq is a Block diagonal
matrix and the diagonal 2× 2 blocks are rotation matrices and
thus have determinant 1. It is also possible to combine both
representations for performing dual quaternion multiplication

dda·db =diag(1,−1,−1,−1) ·Dda

· diag(1,−1,−1,−1) · ddb .

Finally, the inverse of a unit dual quaternion can be obtained
by dda−1 = diag(1,−1,−1,−1) · dda.

B. Bayesian Inference

A typical scenario in which Bayesian inference is applied
considers a system state (which is typically unknown) x and
a noisy measurement of this state z. The noise is represented
by some random vector v. This can be formulated in our dual
quaternion setting resulting in

dz = dv · dx . (4)

Bayesian inference can now be used to perform classical
measurement updates, e.g., for measurement fusion. We will
show that the combination of dual quaternions and the proposed
probability distribution yields a closed form measurement up-
date for simultaneous consideration of position and orientation.

Lemma 5. Consider (4), where dv and dx are distributed
according to our proposed distribution with respective param-
eter matrices Cv and Cx. Then, dx given a fixed dz is also
distributed according to our proposed distribution.

A proof is given in Appendix D. It also describes a
procedure to obtain the parameter matrix of the posterior
distribution. In the following example we show the application
of this result to fusing measurements.

Example: Measurement Fusion
Consider the proposed distribution with parameter matrix

Ctrue = B1 · diag(−1,−100,−50,−50) ·BT
1 ,
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Figure 3. Measurement fusion example.

where B1 is a suitable repositioning matrix ensuring the mode
of the resulting distribution is at (cos(340◦), sin(340◦), 10, 10)T
after converting the dual quaternion to coordinates directly
representing the rotation and translation as two vectors in R2.
It is created by multiplying diag(1,−1,−1,−1) with a matrix
representation of the quaternion representing the desired mode.
In this example, we sample one value from this distribution
and try to estimate this value by performing sequential mea-
surement updates. The prior is given by the parameter matrix
Cprior = diag(−1,−500,−500,−500). This prior has its mode at
(1, 0, 0, 0), i.e., the mode of the prior presents a wrong estimate
of the true hidden value. Now, we perform 100 sequential
measurement updates, where the measurements are sampled
from our distribution with parameter matrix

Cobs = B2 · diag(−1,−a,−a,−a) ·BT
2 .

Here B2 is chosen in a way relocating the mode of the distribution
to being the true hidden value. For a, we chose three different
scenarios with a = −30, a = −100 and a = −300. In this
setting, larger a denotes stronger noise. Measurement updates
are performed using the formulas from the proof of Lemma 5.
The resulting angular error and translational error are computed
by extracting the mode of the posterior after each measurement
update step and comparing them to the true sampled value. This
is shown in Fig. 3.

V. CONCLUSIONS

In this work, we proposed a new distribution capable of
describing uncertainty on the group of rigid transformations
in the plane SE(2). This is of particular interest, because it
considers the inherently nonlinear structure of SE(2), and thus,
errors based on a wrong linearity assumption can be avoided.

Uncertain rigid transformations appear in a broad scope of
technical applications, involving mixed and augmented reality
systems, robotics, and tracking. Consequently, our future work
will focus on presenting dynamic state estimation algorithms
based on this distributional model. Furthermore, we also want
to focus on investigating theoretical aspects of distributions
inherently defined on the SE(2) and SE(3).
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APPENDIX

A. Proof of Lemma 2

The proof is carried out by rewriting the exponent in the
density function. First, we note that(

xs
xt

)>
·
(
C1 C>2
C2 C3

)
·
(
xs
xt

)
= xTs C1xs + 2 · x>t C2xs + x>t C3xt

= x>s (C1 −C>2 C
−1
3 C2)xs

+ (xt +C−13 C2xs)
>C3(xt +C−13 C2xs) .

Thus, the original density can be rewritten as (3). Symmetry
of C1 and C3 is necessary to ensure antipodal symmetry. In
order to show that f(x) is a proper p.d.f., we have to show that
N(C) <∞. This is done by integrating the unrestricted part
first and then integrating over the spherical part. This results in

N(C) =

∫
S1

∫
R2

exp
(
x>s (C1 −C>2 C

−1
3 C2)xs

+ (xt −Axs)
>C3(xt −Axs)

)
dxt dxs

∝
∫
S1

exp
(
x>s (C1 −C>2 C

−1
3 C2)xs

)
dxs .

We observe that the inner integral converges for arbitrary
C2 and negative definite C3. This integration corresponds
to integration over an unnormalized gaussian p.d.f. Thus, Axs
is interpreted as a mean which disappears after integration. The
remaining integral converges for arbitrary C1.

B. Proof of Lemma 3

The lemma is shown by simply integrating out xt from the
density (3).

f(xs) ∝
∫
R2

exp
(
x>s (C1 −C>2 C

−1
3 C2)xs

+ (xt −Axs)
>C3(xt −Axs)

)
dxs

∝ exp
(
x>s (C1 −C>2 C

−1
3 C2)xs

)
·
∫
R2

(xt −Axs)
>C3(xt −Axs)

)
dxs

∝ exp
(
x>s (C1 −C>2 C

−1
3 C2)xs

)
.

where once again A = −C−13 C2.

C. Proof of Lemma 4

We consider a random variable x> = (x>s , x
>
t )
> distributed

according to our proposed distribution. From Lemma 3, we



know that the density of xs is given by

f(xs) =
1

N(C)
exp

(
x>s (C1 −C>2 C

−1
3 C2)xs

)
·
∫
R2

exp
(
(xt −Axs)

>C3(xt −Axs)
)

=
2π
√

det(− 1
2C
−1
3 )

N(C)
exp

(
x>s (C1 −C>2 C

−1
3 C2)xs

)
,

where once again A is defined as in (3). The resulting
normalization constant of the marginal distribution is simply
the Bingham normalization constant F (·). Thus, we have

N(C) =
2π
√

det(− 1
2C
−1
3 )

F (C1 −CT
2 C
−1
3 C2)

.

D. Proof of Lemma 5

Using Bayes theorem, we obtain

fx(ddx|ddz) ∝ fz(ddz|ddx) · fx(ddz) ,

where ddx and ddz are vector representations of our considered
unit dual quaternions. Here, fx(·) is the prior knowledge. Thus,
it remains to derive fz(ddz|ddx), which is directly related to
the density of dv. We now show how to derive fz from the
density of dv. First, we note that

dv = dz · dx−1 .

After reformulating dz to its matrix form and dx−1 to its
vector representation, we obtain

ddz·dx−1 =T ·Ddz ·T · ddx−1

=T ·Ddz ·T2 · ddx
=T ·Ddz︸ ︷︷ ︸

=:H(dz)

·ddx ,

where T = diag(1,−1,−1,−1). Thus, we have ddv =
H(dz) · ddx. Furthermore, we note that |det(H(dz))| = 1.
Applying the transformation theorem for densities yields

fz(vdz|vdx) = fv(H(dz) · vdx) .

This gives us

fx(ddx|ddz) ∝ fz(ddz|ddx) · fx(ddz)

∝ exp
(
d>dx

(
H(dz)> ·Cv ·H(dz) +Cx

)
ddx

)
,

which is just the shape of the desired pdf.
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