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Abstract—In this paper, we address the problem of developing
computationally efficient recursive estimators on the periodic
domain of orientations using the Bingham distribution. The
Bingham distribution is defined directly on the unit hypersphere.
As such, it is able to describe both large and small uncertainties
in a unified framework. In order to tackle the challenging
computation of the normalization constant, we propose a method
using its saddlepoint approximations and an approximate MLE
based on the Gauss-Newton method. In a set of simulation
experiments, we demonstrate that the Bingham filter not only
outperforms both Kalman and particle filters, but can also be
implemented efficiently.

Keywords—Bingham distribution, directional statistics, moment
matching, maximum likelihood estimation.

I. INTRODUCTION

Inference on periodic domains is important for many applica-
tions particularly for orientation estimation, e.g., in smartphones,
UAVs, and augmented reality. This is often achieved using
low cost, noisy sensing systems such as MEMS IMUs or
GPS. High levels of uncertainty need to be considered in
scenarios involving low-quality sensors, weak prior information,
or strong environmental disturbances. These scenarios require
stochastic filtering techniques to be capable of dealing with
both periodicity of the underlying domain of orientations and
strong noise.

State of the art algorithms usually require some modification
in order to account for the periodicity of the underlying domain.
They are based on nonlinear modifications of the Kalman filter
such as the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) [[1]. It is possible to introduce constraints
and use nonlinear projection to achieve feasible estimation
results [2]. There exists an extensive body of research based
on these approaches. Extended Kalman filters for quaternion-
based orientation estimation are presented in [3[], [4], [S]. A
comparison of UKF and EKF for orientation estimation is
presented in [6]. Further algorithms based on the Kalman filter
are discussed in [7], [8]], [9]. These approaches assume all
uncertainties to be Gaussian and linearity of the underlying
state-space, which is inherently wrong when system state and

measurements are defined on a periodic domain. Due to local
linearity of the considered manifolds, filters based on these
assumptions yield good results for low system and measurement
noise. They are prone to problems when the considered
estimation scenario involves highly uncertain quantities.

A. Motivation

A new approach has emerged which uses distribution
assumptions inherently considering the geometry of the un-
derlying manifold in order to handle low-quality sensors and
high measurement noise. This is done by using probability
distributions from directional statistics [[10]], such as the von
Mises distribution on the circle or the Bingham distribution on
the hypersphere. Filtering techniques based on these distribution
assumptions are usually more complicated than algorithms
based on the Gaussian distribution. However, they are promising
because they result in robust estimators even for scenarios
involving strong system and measurement noise [11[], [12],
[13]], [14], [15].

Stochastic filtering based on the Bingham distribution
motivates the contribution of this work. The Bingham dis-
tribution is an antipodally symmetric distribution defined on
arbitrary dimensional hyperspheres [16]. It is of interest because
estimating angles or orientations can be seen as a special case
of state estimation on hyperspheres. Estimation of angles is
performed by using a two-dimensional Bingham distribution
(which is basically a distribution defined on the circle) and
rescaling it if the 180° symmetry is not desired (however,
this rescaling procedure results in a von Mises distribution).
Orientations in 3D can be estimated using unit quaternions
for representing an orientation and considering the four-
dimensional Bingham distribution (it is a natural representation
of uncertainty over the unit sphere of quaternions). In this
situation, antipodal symmetry of the Bingham distribution is
a desirable property reflecting the fact that unit quaternions ¢
and —q represent the same orientation.

The first filters based on the Bingham distribution made
use of the fact that it is closed under Bayesian inference and
proposed an approach based on moment matching to account for



an orientational and angular equivalent of adding two random
variables [[17], [14]]. Furthermore, a UKF like sampling scheme
was proposed in [18]] for handling more complex system models.
One of the remaining challenges when applying filters based
on the Bingham distribution is the efficient computation of its
normalization constant, its derivatives, and efficient computation
of Bingham distribution parameters from given moments or
given samples. The normalization constant and its derivatives
are of particular importance because their computation is
involved in several operations such as computation of the
covariance of a Bingham distributed random vector and
parameter estimation. This computation is currently avoided
by using precomputed lookup tables [19]]. Unfortunately, this
approach might be not feasible for systems involving a limited
amount of memory.

B. Contribution

In this work, we propose a way to avoid the use of
precomputed lookup tables or Markov Chain Monte Carlo
techniques for computationally efficient stochastic filtering
based on the Bingham distribution. This is challenging, because
the prediction step requires a numerical moment matching
procedure that involves multiple evaluations of the Bingham
normalization constant and its derivatives. Therefore, recently
proposed saddlepoint approximations of the Bingham normaliza-
tion constant are used. We show that the optimization problem
involved in obtaining these saddlepoint approximations always
converges. Furthermore, a Gauss-Newton based computation
scheme for moment matching and maximum likelihood estima-
tion (MLE) is derived. In this process, we compute a special
case of the relationship between the Bingham normalization
constant and its derivatives. The evaluation compares the
proposed computation scheme to other recent approaches and
we show that the resulting filter yields a superior estimation
quality over a particle filter and the UKF at a comparable
computation time.

The remainder of the paper is structured as follows. In the
next section, we provide the necessary definitions and formally
state the considered problems. The problem of computing
the Bingham normalization constant and a moment matching
procedure is discussed in Section III. The proposed algorithm is
evaluated in Section IV by comparing the computation time, the
relative computation error and by simulating a filter run in an
orientation estimation scenario. Finally, the work is concluded
in Section V.

II. CONSIDERED PROBLEM
In this work, we consider the Bingham distribution, given by
fz) =N(C)™"-exp(z' Cu) ,

where 2 € Sq_; C R? and C € R%*? is symmetric negative
definite (S4_1 is used to denote the unit sphere in R9). Thus, it
naturally arises when restricting a zero-mean Gaussian random
variable to unit length. Typically, we use a representation based
on an eigendecomposition of C given by M Z M . Thus, the
density is usually written as

f(z)=N(C)™! exp(gTM Z MTQ)

and a Bingham distributed random vector is usually denoted
by z ~ Bingham(M, Z). This representation has the benefit

of separating the location of the modes (encoded in M) from
the magnitude of the dispersion (encoded in Z).

For estimation of parameters from empirical moments of
some random samples and for moment matching procedures,
we are interested in the computation of the moments of a
Bingham distributed random vector z ~ Bingham(M, Z). Due
to antipodal symmetry it is easily seen that E(z) = 0. Thus, the
second moment corresponds to the covariance of a Bingham
distributed random vector. For the second moment, in [16],
Bingham obtained

]E(§~§T):M~diag(wl,...,wn)~MT7 (1)
where
2-N(Z)
_ 0z
w; = NZ) 2

and Z = diag(zy,...,%2,). Thus, the second moment can
be used to compute the Bingham distribution parameters.
Furthermore, M and w; result from the eigendecomposition of
the second moment [E£ (g . @T). However, for the computation
of Z, a numerical procedure is required, which requires the
evaluation of the normalization constant and its derivatives in
each iteration.

This procedure is of particular importance in filters based
on the Bingham distribution [17], [14]. Thus, the problem
considered in the following is threefold. First, we are interested
in the efficient computation of the normalization constant.
Second, we are interested in the computation of its derivatives.
Finally, we need an efficient estimation procedure for estimating
the values of the parameter matrix Z from a given second
moment.

III. EFFICIENT COMPUTATIONS INVOLVING THE BINGHAM
NORMALIZATION CONSTANT

The prediction step is the most expensive part of filters based
on the Bingham distribution, because it involves a spherical
equivalent to convolution. Unfortunately, this operation does
not result in a Bingham distribution. Thus, approximation
procedures are required. The most expensive part is the
computation of second moments for moment matching. Thus,
it is of particular interest to speed up the whole optimization
procedure, which motivates taking a closer look at the Bingham
normalization constant and its derivatives.

The Bingham normalization constant can be expressed as a
hypergeometric function of matrix argument [20]]

n—1 1 . n .
N(Z)=|s" 1F1<2,2,Z) )
where ’S”_l ‘ denotes the area of the surface of a unit ball in R™.
A naive approach would be to perform numerical integration,
which is computationally burdensome. The hypergeometric
function is also computed by the algorithm proposed in
[21] through a series expansion, which becomes burdensome
for many interesting cases (e.g., when the expected angular
uncertainty is sufficiently small). For the particular case of
the Bingham normalization constant, performance issues can
be handled by using precomputed lookup tables as in [22],
which might not be desirable when only a very limited amount
of memory is available, e.g., for an n-dimensional Bingham



Figure 1: The unnormalized probability density function of the Bingham distribution in three dimensions is represented as a heat
map on the unit ball. Due to the antipodal symmetry this plots remain the same for arbitrary 180° rotations.

distribution, the lookup table used in [19] uses 73"~ entries
and performs interpolation to approximate the true value of the
normalization constant. Holonomic gradient descent was also
applied for the exact computation of the Bingham normalization
constant [23]]. However, it does not offer sufficient performance
for real-time applications when computing certain parameter
combinations.

A. Approximation of Normalization Constant and its Deriva-
tives

In order to avoid precomputation, we consider an approach
based on saddlepoint approximations, which were proposed in
[24] for approximation of probability density functions. This
approach can be used for computing an approximation of the
normalization constant of the Bingham distribution when the
entries of the matrix Z = diag(z1, ..., z,) are negative. Kume
and Wood have shown in [25] that the Bingham normalization
constant can be approximated using a third-order saddlepoint
approximation by

- . —-1/2
N(Z) :=21/25(n=1)/2 (K(2> (i, Z))

(H (V=2 - f)*”) exp(—+T) ,

=0

where

T = ps(t,Z)/8 — 5ps(t, Z) /24

t,
with p;(t, Z) := K@ (#)/K®(f), z; <0, and

K(j)(t, Z) = Z <(j—21)! (\/j;_ﬂj) )

Furthermore f is a unique solution of K()(¢,Z) = 1 on
(=00, 2*) with z* = min; (v/—2;).

In order to find an efficient way to compute £, we first
restate a result from [25], which yields

D e L
2t == 2=
2 2

Now, we take a closer look at the behaviour of K1) (¢, Z) on
the considered interval (it is not necessary to consider the more

general case of KU)(t,Z) here, because only K1) (t,Z) is
involved in the optimization).

Proposition 1. For a fixed Z, the function K () (t, Z) is convex
ont € (—o0,2%), where z* is defined as above.

Proof: We show convexity by considering the second
derivative of K(1)(t,Z), which is given by

PEKOMZ) & 1
52 = Z — 3
i=1 (V zi —t)

The convexity follows immediately from 62K () (¢, Z) /6t> > 0
for t < z*. O

Using this result, we obtain guaranteed convergence and
error bounds when applying Newton’s method for solving
KM (t,Z) =1 on our considered interval [26].

This result can be generalized to the computation of N(Z)
with possibly non-negative entries in Z. From the definition of
the normalization constant, one can easily see

N(Z + cI) = N(Z) - exp(c) , 3)

where I denotes the n x n identity matrix. For computing the
normalization constant when Z has nonnegative entries, we
can simply choose —c to be larger then the maximum entry
of Z. Then, computing N(Z + cI) and applying (@) yields the
desired result.

Another main challenge in handling the Bingham distri-
bution is the computation of its derivatives, because they
are used for computing the covariance and thus required
for parameter estimation based on moment matching. In
[27], Kume and Wood demonstrated that a relationship exists
between the derivatives of a Bingham normalizing constant
and a normalizing constant of Bingham distributions of higher
dimensions. For our purposes, we derive a special case of
Proposition 1 from [27].

Corollary 2. We consider once again the Bingham normaliza-

tion constant N(Z) with Z = diag(z1, ..., 2q). Then
ON(Z 1
8; ) = % N(diag(zl, ey Ri—19Riy Ris Riy Ritly e o s zd)) .
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Figure 2: Comparison of the computation of the normalizing constants. For the cases Z = —diag(a, a,a,0.1) (first column),
Z = —diag(a, a,0.1,0.1) (second column) and Z = —diag(a,0.1,0.1,0.1) (third column). These evaluation involves computations

based on a series expansion (red), saddlepoint approximations (blue), holonomic gradient descent (green), and the approach

proposed by Koev et al. (magenta).

Proof: The original result states that using a multi-index
k = (k1,...,kq) € Ng, the partial derivatives of a Bingham
normalization constant are given by

Ol N (di -
( za’g(zb . 7Zd)> :a(k;)N (Z&) ,
02" ... 0zy"
where
_ (14 2k;)/2)
_ ||
k)= H OO “)
k| is the entry sum of &, and
ry
ZE:diag(zl,...,zl y 29,y 22 5..)
—_——

—_———
(2k1+41) times (2k2+1) times

Thus, the partial derivatives of a Bingham normalization
constant can be stated as a rescaled Bingham normalization
constant of another, higher dimensional, Bingham density. We
consider the special case where for a fixed i, we have k; = 1
and k; = 0 for ¢ # j. This simplifies @) according to

a) = DOH26)/2)  T@3/2) 1

=~ wr(1/2)  wl(1/2) 27

O

An approximation of the derivative is obtained by replacing
N(-) on the right hand side by the saddlepoint approximation
N().

B. Efficient Parameter Estimation

The parameter estimation procedure for the Bingham
distribution is also based on moment matching. That is, the
second moment (I)) is matched to the covariance matrix C of
a set of samples. This is performed in two steps. First, the
matrix M is obtained by eigendecomposition of C. Second, Z
is found by solving

S_N(Z)
527‘, _ R
Nz a0 )
(2)
=:f(z

for each ¢ = 1,...,n, where e; is the ¢-th eigenvalue of C.
The matrix Z can be interpreted as a vector of its diagonal
entries (denoted by z). The root finding problem (3) might
not have a solution, when approximations of N(Z) are used.
However, it can be reformulated as

min |1£(2); - ©)

Solving () can be done using the Gauss-Newton method. This
approach requires the computation of the Jacobian Jy; of
f(z;,) and therefore the computation of the gradient and the
Hessian of N(Z). Now, each iteration is computed by

—1
=z® _ (Jka Jrk) JfT,k Fa®)y .

In this scheme, the pseudo-inverse is used. Furthermore, as an
immediate consequence of (3) it follows Bingham(M, Z) =
Bingham(M, Z+I) for all ¢ € R. This relationship is used to
help avoiding numerical cancelation errors (by setting :cgk) =

gcl(.k) — max; x;k) in each iteration).

2D
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Figure 3: Comparison of the maximum likelihood estimation. For the cases Z = —diag(a,a,a,0.1) (first column), Z =

—diag(a, a,0.1,0.1) (second column) and Z = —diag(a,0.1,0.1,0.1) (third column). For the evaluation of the MLE approaches
a Matlab implementation of the Gauss-Newton approach (blue), a C implementation of the Gauss-Newton approach (red), and a

fsolve based approach (green) are shown.

IV. EVALUATION

The proposed methodology will be evaulated in two ways.
First, the performance of the proposed method for computing
the normalization constant and performing parameter estimation
will be investigated. Second, the proposed filter will be
compared to filtering methods involving a Gaussian assumption
in an attitude estimation example.

A. Normalization Constant and Maximum Likelihood Estima-
tion

The computation of the normalizing constant was evaluated
by comparing the computation time and accuracy of the pro-
posed method to some recently published computation methods.
Ground truth was obtained by numerical direct integration in
Matlab 2014a. A C implementation of the series expansion from
[22] was used as a comparison method. Furthermore, we also
used the method from [21] (where we summed over all terms
with || < 100, i.e., the algorithm provided by the authors
was called using mhg (100,2,0.5,2,Z)) and an approach
based on holonomic gradient descent [23]. The optimization
procedure based on Newton’s method for obtaining saddlepoint
approximations was also implemented in C. All simulations
were performed on a system with an Intel Core 17-2620M
CPU and 8GB RAM. The performance of the series based
computation differs depending on the structure of the Matrix
Z. Thus, we have considered three different scenarios in the
evaluations. These scenarios differ in the number of diagonal
entries in Z which are significantly different from 0. This
consideration is sufficient because of the property (3).

The results of this comparison are shown in [Fig. 2] The
main benefit of the proposed approach is that its computation

time is not dependent on the entries of Z. At some point it
outperforms all of the involved comparison methods. On the
other hand, the accuracy seems worse at first. However, it is
not dependent on the entries of Z either, and the relative error
is below 1%. Thus, the proposed method offers a sufficiently
good accuracy at low computational cost.

The resulting MLE algorithm was evaluated by generating
a deterministic sample set as described in [[18] and then
using moment matching procedures for estimating the original
parameters from these samples. The results are shown in
Similarly to the computation of the normalization constant, this
was done for a different number of entries significantly different
from O in the matrix Z and for different values of these entries.
The proposed approach based on the Gauss-Newton method is
less exact compared to fsolve (using a Levenberg—Marquardt
algorithm). However, the errors are below 0.1% and thus once
again sufficiently small for our purposes.

B. Filtering

In this subsection, our goal is to compare the Bingham filter
when using the proposed computation methods to approaches
making a Gaussian assumption. In order to asses the overall
quality of the proposed approach we compare both computation
time and estimation quality. Thus, a typical simulation run is
performed in order to evaluate the resulting filter. Here, the
Bingham filter is compared against a UKF and a Gaussian
particle filter with 100 particles. The UKF and the particle filter
are both implemented as in [18]. The only difference in the
Bingham filter implementation is that all computations involving
the normalization constant (e.g., moment computations and
moment matching) were implemented using the proposed
methods.
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Figure 4: A typical run of the Bingham filter, the UKF, and a Gaussian particle filter with 100 particles and the corresponding
errors of the estimates and the computation time of the filters (including both, prediction and measurement update step).

In our simulation setup, the system function stabilizes a
noisy system state. Thus, the resulting system model is given
by

L1 :lt@(lt_l@g)c@wt ,

which stabilizes the system state gtr towards a goal state
g (here chosen as (0.5,0.5,0.5,0.5)") at the rate ¢ (here
0.1). Here ¢ denotes the quaternion multiplication. Identity
matrices were chosen for M, and M, to obtain a zero mean
equivalent to noise in linear systems. The dispersion parameters
were chosen to be Z,, = diag(—500, —500,—500,0) and
Z, = diag(—10,—10,—10,0). This corresponds to expected
Rodrigues angles uncertainty of 5° and 46° respectively. The
expected angular deviation of a four dimensional Bingham
distributed random vector z is given (in terms of Rodrigues
angles) by

E (2 min(acos(m' - z), 7 —acos(m' - 2))) ,

where m is one of the two modes of the Bingham distribution.
The choice of the mode does not matter because the minimiza-
tion procedure accounts for antipodal symmetry. In order to
use correct parameters for the UKF and the Gaussian particle
filter, parameters for corresponding Gaussian distributions were
obtained by random sampling from the Bingham distributions
involved and computing the respective means and covariances.

The simulation run is shown in Figure [i] For ease of
understanding, angular deviation (based on Rodrigues angles
[28]) from (0,0,0,1) is used to draw the trajectory. The filter
itself was implemented in Matlab. When the Gauss-Newton
based MLE (implemented in C) was used, one filter step
(including time and measurement update) took 4ms. The same
run was carried out using a £solve based MLE where only
the saddlepoint approximations were implemented in C. In
that case, the overall filter step took 18ms. The result of
this comparison shows that the proposed filter offers better
estimation results than approaches assuming the Gaussian
distribution at a comparable computational cost.

V. CONCLUSION

In this work, we proposed a way to avoid the use of pre-
computed lookup tables when applying the Bingham filter for
orientation estimation. This was achieved by showing that the
optimization problem involved in computing the normalization
constant always converges, and deriving a special case of the
relationship between the Bingham normalization constant and
its derivatives. Furthermore, we have proposed a numerical
parameter estimation scheme for a moment matching procedure.
The presented results make orientation estimation based on the
Bingham filter possible in scenarios where use of large lookup
tables is not feasible.
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