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Abstract—We introduce a novel probability distribution on the
group of rigid motions SE(2) and we refer to this distribution as
the partially wrapped normal distribution. Describing probabil-
ities on SE(2) is of interest in a wide range of applications, for
example, robotics, autonomous vehicles, or maritime navigation.
We derive some important properties of this novel distribution
and propose an estimation scheme for its parameters based
on moment matching. Furthermore, we provide a qualitative
comparison to a recently published approach based on the
Bingham distribution, and show that there are complementary
advantages and disadvantages of the two approaches.

Keywords—SE(2), wrapped normal, circular-linear correlation,
directional statistics.

I. INTRODUCTION

Many applications involve the consideration of the position
along with the orientation of an object such as a mobile robot,
a car, or a person. In two-dimensional scenarios, position
and orientation can be described by the group of rigid body
motions in two dimensions SE(2) [1]. However, position
and orientation cannot be measured exactly in many practical
applications. This problem can be addressed by considering
probability distributions on SE(2), which allows describing
the uncertainty of an estimate. For this purpose, we propose the
use of a novel distribution, which we refer to as the partially
wrapped normal distribution in this paper.

The new distribution is based on distributions from di-
rectional statistics [2], a field in statistics that deals with
directional quantities such as angles and orientations. A lot
of work has been published on the circular case, for example
by Batschelet [3], Fisher [4], and Jammalamadaka [5]. Also,
the spherical case has been considered [6], and a variety
of spherical distributions have been introduced, e.g., the von
Mises-Fisher distribution [7], the Watson distribution [8], the
Bingham distribution [9], and the Fisher-Bingham distribution
[10].

In order to consider several correlated angles, i.e., taking
circular-circular correlation into account, probability distribu-
tions on the torus (or more general, the n-torus) have been
proposed, particularly the multivariate wrapped normal distri-
bution [11], [12], and the multivariate von Mises distribution
[13], [14].

Moreover, the cylindrical case has been considered, i.e.,
one dimension is periodic whereas the other is not. A circular-
linear correlation coefficient has been proposed by Mardia
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Fig. 1: Probability density of a cylindrical PWN distribution
with n = 2,m = 1 and parameters µ = [1, 1]T , c11 =
52, c12 = c21 = 0.99 · 5 · 2.1, c22 = 2.12.

[15], and the wrapped normal distribution [11], [16] as well
as the von Mises distribution [17], [18] have been generalized
for the cylindrical case.

We have previously investigated a distribution on SE(2)
in [19]. There, we proposed a new distribution to be used in
conjunction with dual quaternions. This distribution is derived
from the Bingham distribution [9] and has a variety of advan-
tages. For example, it is closed under Bayesian inference, but
there are also some issues, e.g., a complicated normalization
constant. We will present a new distribution for SE(2) that is
derived from the wrapped normal distribution. Its strengths and
weaknesses are, in a sense, complementary to the distribution
proposed in [19] (see Table II).



The contributions of this paper are the following. We define
a new probability distribution, which we call partially wrapped
normal (PWN) distribution, for arbitrary dimensions and show
that it is a generalization of the distributions discussed in
[11] and [12]. Particularly, we consider a special case of the
PWN distribution that is applicable to SE(2). Furthermore, we
define hybrid moments, which can be used to describe random
vectors with periodic as well as nonperiodic dimensions. Based
on these moments, we derive a parameter estimation scheme.
Finally, we discuss the application to SE(2).

II. A NEW PROBABILITY DISTRIBUTION

In this paper, we build upon two types of basic manifolds,
the unit circle S1 and the real line R. We parameterize the
unit circle as [0, 2π) ⊂ R with the topology of {x ∈ C :
|x| = 1}. More general, we consider Cartesian products of
these manifolds, i.e., (S1)m×Rn−m for natural numbers n ≥ 1
and 0 ≤ m ≤ n.

A. Prerequisites

For the sake of completeness, we start with a definition of
the widely used multivariate normal (or Gaussian) distribution.

Definition 1 (Normal Distribution). An n-dimensional normal
distribution is given by the probability density function (pdf)

N (x;µ,C)

=
1

(2π)n/2|det C|
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
with x ∈ Rn, mean µ ∈ Rn, and symmetric positive definite
covariance matrix C ∈ Rn×n.

A one-dimensional Gaussian can be wrapped around the
circle, which yields the wrapped normal distribution.

Definition 2 (Wrapped Normal Distribution). A wrapped
normal (WN) distribution [5] is given by the pdf

f(x;µ, σ) =

∞∑
k=−∞

N (x+ 2πk;µ, σ2)

with x ∈ [0, 2π), location parameter µ ∈ [0, 2π), and
uncertainty parameter σ > 0.

B. Partially Wrapped Normal Distribution

Now, we introduce a new distribution, which we refer to as
partially wrapped normal distribution. It is obtained by taking
an n-dimensional Gaussian distribution and wrapping the first
m ≤ n dimensions.

Definition 3 (Partially Wrapped Normal Distribution). An n-
dimensional PWN distribution with 0 ≤ m ≤ n wrapped
dimensions is given by the pdf

f(x;µ,C) =

∞∑
k1=−∞

· · ·
∞∑

km=−∞

N


x+



2πk1
...

2πkm
0
...
0


;µ,C



with x ∈ [0, 2π)m×Rn−m, location parameter µ ∈ [0, 2π)m×
Rn−m, and symmetric positive definite uncertainty parameter
C ∈ Rn×n.

The PWN distribution is a generalization of both the
normal distribution and the WN distribution. In fact, there is
a variety of interesting special cases of the PWN distribution
that have previously been discussed in literature. We give a
taxonomy in Table I. An example of the pdf for the cylindrical
case is depicted in Fig. 1.

C. Special Case SE(2)

In this paper, we focus on the special case n = 3,m = 1,
i.e., the group of two-dimensional rigid body motions SE(2).
From this point on, we always assume n = 3,m = 1 unless
otherwise specified. It should be noted that the group of three-
dimensional rigid body motions SE(3) does not appear as a
special case of the PWN distribution.

In the SE(2) case, the pdf simplifies to

f(x;µ,C) =

∞∑
k=−∞

N

(
x+

[
2πk

0
0

]
;µ,C

)

with x ∈ S1 × R2, µ ∈ S1 × R2, and symmetric positive
definite C ∈ R3×3.

The parameters µ and C do not retain their traditional
meaning as mean and covariance. However, they still possess
a quite intuitive interpretation. We denote

µ =

[
µ1

µ2

µ3

]
, C =

[
c11 c12 c13
∗ c22 c23
∗ ∗ c33

]
,

and omit symmetric entries in the covariance matrix (marked
with asterisks). This leads to the following interpretations:

µ1 circular mean of periodic part
µ2, µ3 mean of linear part
c11 uncertainty of periodic part

c12, c13 circular-linear correlation[
c22 c23
∗ c33

]
covariance of linear part

D. Marginal Distributions

We now consider the marginal distributions of the PWN
distribution and show that they turn out to be Gaussian and
WN distributions respectively.

Lemma 1. Marginalization of the circular part yields a normal
distribution.



Periodic Manifold Distribution n m References

no real vector space Rn Gaussian n 0 [20], [21], [22]

yes circle S1 WN 1 1 [2], [23]
yes torus T 1 bivariate WN 2 2 [11], [12]
yes n-torus Tn multivariate WN n n [12]

partial cylinder S1 × R - 2 1 [11]
partial SE(2) S1 × R2 - 3 1 this paper

TABLE I: Interesting special cases of the PWN distribution.

Proof: We marginalize circular part according to

f(x2, x3) =

∫ 2π

0

f((x1, x2, x3)T ;µ,Σ)dx1

=

∫ 2π

0

∞∑
k=−∞

N

([
x1 + 2πk

x2
x3

]
;µ,Σ

)
dx1

(a)
=

∞∑
k=−∞

∫ 2π

0

N

([
x1 + 2πk

x2
x3

]
;µ,Σ

)
dx1

(b)
=

∫ ∞
−∞
N

([
x1
x2
x3

]
;µ,Σ

)
dx1

(c)
=N

([
x2
x3

]
;

[
µ2

µ3

]
,

[
c22 c23
c32 c33

])
.

At (a), we use the dominated convergence theorem, at (b) we
use the concatenation of integrals (see [12, Appendix]), and at
(c) we use the Gaussian marginal as given in [21, 8.1.2].

Lemma 2. Marginalizing the linear part yields a WN distri-
bution.

Proof: We marginalize the linear part according to

f(x1) =

∫ ∞
−∞

∫ ∞
−∞

f((x1, x2, x3)T ;µ,Σ)dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

∞∑
k=−∞

N

([
x1 + 2πk

x2
x3

]
;µ,Σ

)
dx2dx3

(a)
=

∞∑
k=−∞

∫ ∞
−∞

∫ ∞
−∞
N

([
x1 + 2πk

x2
x3

]
;µ,Σ

)
dx2dx3

(b)
=

∞∑
k=−∞

N (x1 + 2πk;µ1, c11) .

At (a), we use the dominated convergence theorem, and at (b)
we use the Gaussian marginal as given in [21, 8.1.2].

E. Conditional Distributions

In this section, we consider what happens when we condi-
tion on the linear or the circular part.

Lemma 3. Conditioning a PWN distribution on the linear part
yields a WN distribution.

Proof: A direct calculation yields

f(x1|x2, x3) =
f(x1, x2, x3)

f(x2, x3)

(a)
=

∑∞
k=−∞N

(
x+ (2πk, 0, 0)T ;µ,C

)
N
([
x2
x3

]
;

[
µ2

µ3

]
,

[
c22 c23
c32 c33

])
(b)
=

∞∑
k=−∞

N
(
x;µ+ (2πk, 0, 0)T ,C

)
N
([
x2
x3

]
;

[
µ2

µ3

]
,

[
c22 c23
c32 c33

])
(c)
=

∞∑
k=−∞

N (x1, µ̃, c̃) ,

with µ̃ = µ1 + (c12, c13)

[
c22 c23
c32 c33

]−1 [
x2 − µ2

x3 − µ3

]
and c̃ = c11 − (c12, c13)

[
c22 c23
c32 c33

]−1 [
c12
c13

]
where we use Lemma 1 at (a), symmetry of µ and x at (b),
and [21, 8.1.3] at (c).

Lemma 4. Conditioning a PWN distribution on the circular
part yields a quotient of infinite series.

Proof: We calculate

f(x2, x3|x1) =
f(x1, x2, x3)

f(x1)

(a)
=

∑∞
k=−∞N

(
x+ (2πk, 0, 0)T ;µ,C

)∑∞
k=−∞N (x1 + 2πk;µ1, c11)

,

where we use Lemma 2 at (a).

III. MOMENTS

In this section, we introduce linear and circular moments,
which are then generalized to be applicable to the PWN
distribution. We call these generalizations hybrid moments.

A. Linear, Circular, and Hybrid Moments

Definition 4 (Linear Moment). For a random variable X
defined on R, the l-th linear moment is given by

ml = E
(
X l
)
∈ R .

Furthermore,

mc
l = E

(
(X − E (X))l

)
∈ R

is the l-th central linear moment.



If X is defined on Rn, the first linear moment (i.e.,
the mean) is given by µ = E (X) and the second
central moment (i.e., the covariance) is given by C =
E
(
(X − µ) · (X − µ)T

)
, which simplifies to the second (non-

central) moment C = E
(
X ·XT

)
for µ = 0.

The linear correlation is encoded in the off-diagonal entries
of C.

Definition 5 (Circular Moment). For a random variable X
defined on the circle, the l-th circular moment is given by

ml = E (exp(inX)) = E (cos(lX) + i sin(lX))

=

∫ 2π

0

f(x) cos(lx)dx+ i

∫ 2π

0

f(x) sin(lx)dx ∈ C .

It should be noted that the first circular moment con-
tains information about both location and uncertainty of the
considered distribution. In fact, the circular mean is given
by argm1 = atan2(Imm1,Rem1) and the uncertainty is
quantified by |m1| =

√
(Imm1)2 + (Rem1)2.

For convenience, we write the l-th circular moment as a
two-dimensional real-valued vector

[Reml, Imml]
T = [E (cos(lX)) ,E (sin(lX))]T

in this paper. Now, it is easily seen that for a circular random
variable X , the first circular moment is identical to the
first linear moment of the vector [cos(x), sin(x)]T . This fact
motivates the following definition of the, as we will call it,
hybrid moment.

Definition 6 (Hybrid Moment). The first hybrid moment of a
partially wrapped random variable X on S1 ×R2 is given by

m1 = E


cos(X1)

sin(X1)
X2

X3


 ∈ R4 .

The second hybrid moment m2 ∈ R4×4 of a partially wrapped
random variable X on S1 × R2 is given by

m2 = E



cos(X1)

sin(X1)
X2

X3

−m1



cos(X1)

sin(X1)
X2

X3

−m1


T
 .

This definition is an adaption of the moments considered
by Johnson et al. in [11, Sec. 3] for the cylindrical case.
It can easily be generalized for PWN distributions arbitrary
dimension.

B. Hybrid Moments of the PWN Distribution

It turns out that the first two moments of a PWN distribu-
tion can be calculated in closed form.

Lemma 5. The first hybrid moment of a PWN distribution
with parameter µ and C is given by

m1 = µ̃ =

cos(µ1) exp(−c11/2)
sin(µ1) exp(−c11/2)

µ2

µ3

 .

Proof: A direct calculation yields

m1 =

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

cos(x1)
sin(x1)
x2
x3

 f(x;µ,C)dx3dx2dx1

=


∫ 2π

0
cos(x1)

∫∞
−∞

∫∞
−∞ f(x;µ,C)dx3dx2dx1∫ 2π

0
sin(x1)

∫∞
−∞

∫∞
−∞ f(x;µ,C)dx3dx2dx1∫∞

−∞
∫∞
−∞ x2

∫ 2π

0
f(x;µ,C)dx1dx3dx2∫∞

−∞
∫∞
−∞ x3

∫ 2π

0
f(x;µ,C)dx1dx3dx2


(a)
=


∫ 2π

0
cos(x1)f(x1;µ1, c11)dx1∫ 2π

0
sin(x1)f(x1;µ1, c11)dx1∫∞

−∞
∫∞
−∞ x2f(x2:3;µ2:3,C2:3×2:3)dx3dx2∫∞

−∞
∫∞
−∞ x3f(x2:3;µ2:3, µ3)T ,C2:3×2:3)dx3dx2


(b)
=

cos(µ1) exp(−c11/2)
sin(µ1) exp(−c11/2)

µ2

µ3

 ,

and use Lemma 1 and Lemma 2 at (a) and the formulas for
WN and Gaussian moments at (b).1

Lemma 6. The second hybrid moment of a PWN distribution
with parameter µ and C is given by

m2 = C̃ =

c̃11 c̃12 c̃13 c̃14
∗ c̃22 c̃23 c̃24
∗ ∗ c̃33 c̃34
∗ ∗ ∗ c̃44

 ,

where

c̃11 =
a

2
(1− exp(−c11) cos(2µ1)) ,

c̃22 =
a

2
(1 + exp(−c11) cos(2µ1)) ,

c̃12 = −a
2

exp(−c11) sin(2µ1) ,

c̃13 = − exp(−c11/2)c12 sin(µ1) ,

c̃23 = exp(−c11/2)c12 cos(µ1) ,

c̃14 = − exp(−c11/2)c13 sin(µ1) ,

c̃24 = exp(−c11/2)c13 cos(µ1) ,

c̃33 = c33 ,

c̃34 = c34 ,

c̃44 = c44 ,

and a = 1− exp(−c11).

Proof: This is a generalization of the results by Johnson
[11, p. 224].

For µ1 = 0, this moment simplifies significantly to

m2 = C̃ =

c̃11 0 0 0
∗ c̃22 c̃23 c̃24
∗ ∗ c22 c23
∗ ∗ ∗ c33

 (1)

1The notation xi:j refers to all entries xi, xi+1, . . . , xj−1, xj .



where

c̃11 =
1

2
(1− exp(−c11))2 ,

c̃22 =
1

2
(1 + exp(−2c11)) ,

c̃23 = exp(−c11/2)c12 ,

c̃24 = exp(−c11/2)c13 .

C. Sample Moments

In many cases, it is important to consider samples of a
probability distribution, for example to estimate the param-
eters of the distribution from real-world data or to use the
distribution in conjunction with particle filtering schemes [24].
For l weighted samples s1, . . . , sl with si ∈ [0, 2π) × R2

and weights w1, . . . , wl with
∑l
k=1 wk = 1, we can calculate

the hybrid sample moments as follows. We consider s̃i :=
[cos(si,1), sin(si,1), si,3, si,4]T . For the first hybrid moment,
we calculate

µ̃ = m1 =

l∑
k=1

wks̃k .

Furthermore, we obtain the second hybrid moment

C̃ = m2 =

l∑
k=1

wk(s̃k − µ̃)(s̃k − µ̃)T .

D. PWN Parameter Estimation

Maximum likelihood estimation of the parameters is diffi-
cult even for a WN distribution because the likelihood function
involves infinite series. For this reason, we rely on fitting a
WN to given hybrid moments. More precisely, we fit the first
hybrid moment µ̃, but only certain entries of C̃, namely c̃i,j
for i ≥ 3, j ≥ 3. This is due to the fact that for the periodic
part, µ̃1:2 encodes the mean and the uncertainty, whereas
C̃1:2,1:2 encodes the second circular moment, which cannot
be maintained in general.2

For hybrid moments µ̃ and C̃, we obtain the PWN pa-
rameters µ and C as follows. According to Lemma 5, we
calculate

µ = [atan2(µ̃2, µ̃1), µ̃3, µ̃4]T

and

c11 = −2 log

(√
µ̃2
1 + µ̃2

2

)
.

The formula for the first component is identical to formula
used for WN parameter estimation in [23]. In order to obtain
the entries of C that encode the linear-circular correlation, we
use Lemma 6.

In order to calculate c12, the two equations

−c̃13 exp(c11/2) = c12 sin(µ1) ,

c̃23 exp(c11/2) = c12 cos(µ1)

2The second circular moment of a WN distribution is a function of the first
circular moment.

are given. In the case of a PWN distribution, there is obviously
a functional dependence between c̃13 and c̃23. However, this
does not hold in general, e.g., for hybrid moments of samples.
For this reason, we cannot exactly fulfill both equations and
instead seek to minimize the squared error

e(c12) = (p− c12 sin(µ1))2 + (q − c12 cos(µ1))2

= p2 + q2 + c212 − 2c12(p sin(µ1) + q cos(µ1))

with p = −c̃13 exp(c11/2) and q = c̃23 exp(c11/2). It holds
that

∂e(c12)

∂c12
= 2c12 − 2(p sin(µ1) + q cos(µ1))

∂2e(c12)

(∂c12)2
= 2 > 0

Setting ∂e(c12)
∂c12

= 0 yields the optimal value

c12 = p sin(µ1) + q cos(µ1)

that minimizes the squared error. Analogously, we calculate

c13 = p̄ sin(µ1) + q̄ cos(µ1)

where p̄ = −c̃14 exp(c11/2) and q̄ = c̃24 exp(c11/2).

Finally, we copy the linear part

C2:3,2:3 = C̃3:4,3:4 .

All in all, the proposed procedure exactly retains the entries
of the hybrid moment marked in green and approximately
retains the entries marked in yellow :

µ̃ =


µ̃1

µ̃2

µ̃3

µ̃4

 , C̃ =


c̃11 c̃12 c̃13 c̃14

c̃21 c̃22 c̃23 c̃24

c̃31 c̃32 c̃33 c̃34

c̃41 c̃42 c̃43 c̃44

 .

E. Circular-Linear Correlation Coefficient

In 1976, Mardia et al. proposed a circular-linear correlation
coefficient [15], which has also been used by [3] and [11]. The
circular-linear correlation coefficient of a real variable x and
a circular variable θ is obtained by calculating the squared
multiple correlation of x and [cos(θ), sin(θ)]T . For E (x) =
0,E (sin(θ)) = 0 (i.e., linear and circular mean are 0), this
yields

R2 =
r2xc + r2xs − 2rxcrxsrcs

1− r2cs
∈ [0, 1] , (2)

where rxc = ρ(x, cos(x)), rxs = ρ(x, sin(x)), and rcs =
ρ(cos(x), sin(x)) are Pearson correlation coefficients defined
according to

ρ(x, y) =
E (x · y)√

Var(x) Var(y)
.

An obvious disadvantage of this definition is the fact that the
sign of the correlation coefficient is lost.



Lemma 7. For a PWN distribution with µ = 0, we consider
the circular-linear correlation between x1 and x2. In this case,
we have

rcs = ρ(cos(x1), sin(x1)) ∝ E (cos(x1) · sin(x1)) = 0 ,

rxc = ρ(x2, cos(x1)) ∝ E (x2 · cos(x1)) = 0 ,

and the circular linear correlation coefficient (2) simplifies to

R2 = r2xs .

Proof: We use the simplification for µ = 0 given in (1),
which yields

0 = c̃12
= E ((cos(x1)− E (cos(x1))) · (sin(x1)− E (sin(x1))))

= E ((cos(x1)− E (cos(x1))) · sin(x1))

= E (cos(x1) sin(x1)− E (cos(x1)) sin(x1))

= E (cos(x1) sin(x1))− E (cos(x1))E (sin(x1))

= E (cos(x1) sin(x1)) ,

and similarly

0 = c̃13 = E ((cos(x1)− E (cos(x1))) · (x2 − E (x2)))

= E (cos(x1) · x2) .

More specifically, Lemma 7 yields |R| = |rxs|. If we
avoid taking the absolute value, we can restore the sign of
the correlation in this special case, i.e., R = rxs. It can be
obtained from the second hybrid moment according to

rxs =
E (sin(x1) · x2)√

Var(sin(x1)) Var(x2)
=

c̃23√
c̃22 · c̃33

,

where we use the fact that

c̃23 = E ((sin(x1)− E (sin(x1))) · (x2 − E (x2)))

= E (sin(x1) · x2) .

We can derive the circular-linear correlation between x1
and x3 analogously. For PWN distributions of higher di-
mension, this approach can be generalized to calculate the
correlation between an arbitrary periodic and an arbitrary
nonperiodic dimensions. Correlations between two nonperiodic
dimensions can be determined just in a classical Gaussian
scenario. Correlations between two periodic dimensions are
more involved and have been discussed in, e.g., [12], [25].

IV. APPLICATION TO SE(2) ESTIMATION

In this section, we discuss how the PWN distribution can
be applied to SE(2) estimation problems.

A. Parameterization

When applying the PWN distribution to the group of rigid
motions SE(2), two different interpretations are possible.

1) Rotate according to x1, then translate according to
(x2, x3)T .

2) Translate according to (x2, x3)T , then rotate accord-
ing to x1.

It is easily seen that both concepts can ultimately be used
to represent any position and rotation in SE(2) and, for a
fixed pose, it is easy to convert between both interpretations.
However, when considering these interpretations in conjunc-
tion with a probability distribution on [0, 2π)×R2 such as the
PWN distribution, it makes a significant difference regarding
the types of probability distributions that can be expressed. The
reason for this effect lies in the fact that two rigid body motions
are considered similar when their parameters similar, but the
choice of parameterization affects how the parameters relate
to rigid body motions, and, thus, which rigid body motions
are similar. If rotation is performed first, a small difference in
the rotation parameter x1 can lead to a large difference in the
resulting position. If translation is performed first, the resulting
position is independent of x1. In either case, the rotation only
depends on x1. Several examples of the PWN distribution for
both interpretations are depicted in Fig. 2 to illustrate this issue.

In homogeneous coordinates [1], rotations and translations
are parameterized by

Rx1
=

[
cos(x1) − sin(x1) 0
sin(x1) cos(x1) 0

0 0 1

]
, Tx2,x3

=

[
1 0 x2
0 1 x3
0 0 1

]
,

and, depending on the order, the combined transformation
yields

Rx1
· Tx2,x3

=

[
cos(x1) − sin(x1) cos(x1)x2 − sin(x1)x3
sin(x1) cos(x1) sin(x1)x2 + cos(x1)x3

0 0 1

]
,

Tx2,x3
·Rx1

=

[
cos(x1) − sin(x1) x2
sin(x1) cos(x1) x3

0 0 1

]
.

Of course, it is also possible to write these transformations
as dual quaternions similar to [19]. However, the PWN distri-
bution is not directly defined on the space of dual quaternions.

B. Operations on the PWN Distribution

In order to derive filtering algorithms, typically two oper-
ations are required, addition of random variables (i.e., convo-
lution of densities) and multiplication of densities.

It can be shown that the PWN distribution is closed under
convolution and the equations to derive the parameters of the
new density are identical to the Gaussian case. More precisely,
for two PWN distributions with parameters µ

1
,C1 and µ

2
,C2,

the density after convolution is a PWN with parameters µ =
µ
1

+ µ
2

and C = C1 + C2. This property generalizes to
arbitrary dimensions.

However, the PWN distribution is not closed under multi-
plication for m ≥ 1. This is easy to verify because not even the
special case of a WN distribution is closed under multiplication
[23]. In order to perform a Bayes update in the context of a
stochastic filter, approximations similar to [23] or sampling and
reweighting schemes similar to [26] or [27] can be applied.

Based on these results, we give a comparison to the
Bingham derivate proposed in [19] in Table II. The PWN
inherits the normalization constant and stochastic sampling
from the Gaussian distribution, whereas the Bingham derivate’s
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Fig. 2: Samples drawn from exemplary PWN densities on SE(2). We use µ = [1, 10, 5]T in all cases. In the top row, we apply
translation first and rotation later, in the bottom row we do it vice versa. Each arrow indicates the transformation applied to the
vector [1, 0]T .

Property PWN Bingham derivate [19]

normalization constant easy hard
stochastic sampling easy hard
moments easy hard
antipodally symmetric no yes
extensible to SE(3) no yes
exponential family no yes
closed under convolution yes no
closed under multiplication no yes

TABLE II: Comparison between proposed approach and [19]

normalization constant and sampling are closely related to
the significantly more complicated Bingham counterparts. We
have derived closed-form equations for the moments of a
PWN distribution, but moments of the Bingham derivate are
difficult to obtain. However, the Bingham derivate is, just as
the Bingham distribution itself, antipodally symmetric and can
naturally be applied to dual quaternions allowing both SE(2)
and SE(3) applications. Being a member of the exponential
family, the Bingham derivate is, unlike the PWN, closed
under multiplication. Then again, the PWN is closed under
convolution, which is not the case for the Bingham derivate
(and neither for the Bingham distribution itself).

V. CONCLUSION

In this paper, we have presented the partially wrapped
normal distribution, a multi-dimensional generalization of the
wrapped normal distribution, where some dimensions are
wrapped whereas others are not. This distribution has a variety
of interesting special cases, particularly it can be applied to the
group of two-dimensional rigid body motions SE(2).

We have derived the marginal and conditional distribu-
tions. Furthermore, we have introduced the notion of hybrid
moments, a generalization of product moments to partially
wrapped scenarios. The hybrid moments for PWN distributions
have been derived in closed form and a parameter estimation
scheme based on moment-matching has been given. Addi-
tionally, the circular-linear correlation coefficient [15] was

derived analytically for the PWN distribution. Finally, we have
discussed the application to SE(2) estimation.
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