
A Direct Method for Checking Overlap
of Two Hyperellipsoids

Igor Gilitschenski and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute of Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

gilitschenski@kit.edu, uwe.hanebeck@ieee.org

Abstract—In this work, we propose a method for checking
whether two arbitrary-dimensional hyperellipsoids overlap with-
out making use of any optimization or root-finding methods.
This is achieved by formulating an overlap condition as a
polynomial root counting problem, which can be solved directly.
The addressed challenges involve the inversion of a polynomial
matrix using a direct method. The proposed approach extends one
of our earlier results, which was restricted to certain combinations
of ellipsoids and yields a fixed run-time for a fixed problem
dimensionality. Thus, for the first time, an algorithm for checking
overlap of arbitrary hyperellipsoids is proposed that can be
evaluated in closed form. That is, in the absence of cut-off errors,
the proposed method yields an exact result after a finite number
of steps.

Keywords—Hyperellipsoid overlap, Sturm theorem, Leverrier
algorithm

I. INTRODUCTION

Checking the intersection of hyperellipsoids is of interest in
many scenarios, because hyperellipsoids can be used to account
for uncertainty or as an easily computable approximation for
other objects. Thus, a test for overlap is motivated by a broad
range of applications and of particular use in handling data
validation and fault-detection problems in data fusion scenarios
where hyperellipsoids are used to represent uncertainty bounds.
Furthermore, algorithms addressing this challenge can also
be applied to on-line collision avoidance and probabilistic
path planning, e.g., in robotics. Testing whether hyperellipsoids
overlap is also used in the field of computer graphics (e.g., game
development and CAD systems), in many physical simulations,
and in statistics (where covariance ellipsoids of the normal
distribution generalize the concept of σ-bounds to higher
dimensions).

This seemingly simple problem poses a number of in-
teresting challenges. On the one hand, it is of particular
interest to come up with computationally efficient and robust
algorithms. On the other hand, a thorough investigation of
the entire problem structure promises to yield interesting
theoretical results. Thus, it is not surprising that a broad number
of publications has considered hyperellipsoid overlap. First,
hyperellipsoid overlap tests in the context of fault detection
were discussed in [1], [2], [3]. An algebraic condition for
the separation of two ellipsoids in the Euclidean space was
presented in [4]. In a similar setup, [5] proposed a test for
ellipsoidal intersection, which is based on observing eigenvalue
behaviour. Furthermore, several ellipsoid-based continuous
collision detection algorithms have been proposed in [6], [7], [8].

All of these recently discussed algorithms usually restrict their
consideration to the two- or three-dimensional case, because
their motivation stems from computer graphics and robotic
applications. In higher dimensions, such tests are usually based
on optimization or root-finding methods. Such an algorithm is
used in the ellipsoidal toolbox [9].

Furthermore, an efficient testing approach for arbitrary
dimensions was discussed in [10] and later improved in [11].
The problem representation in these works was used in [12],
where we proposed a novel method for testing whether two n-
dimensional hyperellipsoids overlap. The algorithm was applied
to a fault-detection scheme in Kalman filters. Even though our
newly proposed method had a higher computational complexity,
it offered a surprising result, because we could show that
checking whether two hyperellipsoids overlap did not require
the use of optimization or root-finding techniques even in
higher dimensions. That is, the limitations imposed by the
Abel-Ruffini theorem (stating that there is no general algebraic
solution to polynomial equations of degrees higher than 4),
which was independently proven and investigated by Galois,
do not present an obstacle to a closed-form check of overlap
in an arbitrary-dimensional scenario.

As in [11], our proposed method was based on two steps.
In the first step, we obtained the coefficients of a polynomial
characterizing the overlap of the ellipsoids using Leverriere
algorithm. This differs from [11], where the polynomial (or
its derivative) was obtained using simultaneous diagonalization
(which requires root-finding for eigenvalue computations). Then,
in the second step, a polynomial variant of the Euclidean
algorithm was used in order to perform polynomial root
counting according to Sturm’s theorem. This also differs from
[11], where it was proposed to use either convex optimization
on the polynomial itself or a bisection method on its derivative.

Unfortunately, the approach in [12] did not present a general
algorithm capable of checking overlap for arbitrary pairs of
hyperellipsoids. This was due to the fact that this approach
assumed the difference of the matrices describing the shape of
the hyperellipsoids to be invertible. Thus, it failed for certain
combinations, e.g., when both ellipsoids only differed in the
position of their centers.

In this paper, we address these limitations and extend our
earlier method by contributing a general algorithm for checking
the overlap of two hyperellipsoids. The proposed condition is
based on interpreting the problem as a polynomial root counting
problem on a compact interval. This can be performed using



Figure 1: Checking whether the blue ellipsoids intersect can be thought of as checking whether the red ellipsoid E(Eλ,mλ)
disappears for some λ ∈ (0, 1). The arc connecting the centers of the blue ellipsoids represents mλ for λ ∈ (0, 1).

Sturm’s theorem that provides a method for polynomial root
counting based on the Euclidean algorithm. A new test for
overlap is proposed by adapting a modification of the Leverriere
algorithm for computing the resolvent of a (possibly not regular)
matrix and its computational complexity is discussed.

The remainder of this paper is structured as follows. In Sec.
II, a modified version of the Leverrier algorithm is revisited,
which was originally applied in the context of singular systems.
It will be used as a key component in our newly proposed
algorithm for computing the polynomial of interest. The condi-
tion for checking overlap of hyperellipsoids and its derivation
is reviewed in Sec. III from an hyperellipsoid representation
based on symmetric positive definite matrices. In Sec. IV, we
present and discuss the algorithm for checking overlap, which
does not require the use of numerical optimization techniques.
The work is concluded in Sec. V.

II. A MODIFIED LEVERRIER ALGORITHM

The Leverrier algorithm [13] is used to compute the
resolvent of a matrix A ∈ Rn×n, which is defined as
(λI−A)−1 (where λ ∈ R and I is the n× n identity matrix).
This is performed by simultaneously computing the determinant
and the adjoint of (λI−A) and then using

(λI−A)−1 =
adj(λI−A)

det(λI−A)
.

For a regular matrix M, this algorithm can be simply
adapted to compute (λM − A)−1, by computing (λI −
AM−1)−1 first. To evaluate the general condition outlined in
this paper, a more general algorithm is needed which considers
cases when M is singular. This generalization of Leverrier
algorithm was proposed in [14], where a scheme is derived to
compute R(λ) := adj(λM −A) and q(λ) := det(λM −A)
for not necessarily regular M. This is performed by

R(λ) =

n−1∑
k=0

Rn−1,kλ
k, q(λ) =

n∑
k=0

qi,k ,

where

Ri+1,k =

{ −MRi,k−1 + qi+1,kI if k = i+ 1
−ARi,k −MRi,k−1 + qi+1,kI if k = 1, ..., i
−ARi,0 + qi+1,kI if k = 0

and

qi+1,k =



1

i+ 1
tr(MRi,k−1) if k = i+ 1

− 1

i+ 1
tr(ARi,k −MRi,k−1) if k = 1, ..., i

− 1

i+ 1
tr(ARi,0) if k = 0

with the base case R0,0 = I.

III. PROPOSED CONDITION

Several representations exist for describing an hyperellipsoid.
A typical one is based on a symmetric positive definite matrix
describing the shape and orientation of the hyperellipsoid and
a vector describing its center. This representation turns out to
be very convenient for deriving an overlap condition, which
will be performed by investigating a convex combination of
two inequalities each describing an ellipsoidal set.

Notation 1. Let A ∈ Rn×n be symmetric positive definite and
v ∈ Rn. Then, a hyperellipsoid is described using the notation

E(A, v) := {x ∈ Rn : (x− v)>A(x− v) ≤ 1} .

Using this notation, the goal can be stated as checking
whether E(A, v) ∩ E(B, w) = ∅ holds. Developing a criterion
for overlap is based on describing ellipsoids Eλ (with λ ∈ [0, 1])
that satisfy

(E(A, v) ∩ E(B, w)) ⊆ Eλ ⊆ (E(A, v) ∪ E(B, w)) (1)

for every λ ∈ (0, 1). The set Eλ is characterized in the following
proposition.

Proposition 1. Consider symmetric positive definite matrices
A, B ∈ Rn×n and arbitrary vectors v, w ∈ Rn. Define

Eλ := λA+ (1− λ)B , mλ := E−1λ (λAv + (1− λ)Bw) ,
K(λ) := 1− λv>Av − (1− λ)w>Bw +m>λEλmλ .

Then for a fixed λ ∈ (0, 1) the set

Eλ := {x ∈ Rn : (x−mλ)
>Eλ(x−mλ) ≤ K(λ)} (2)

is either empty, consists of one element, or is itself a hyperel-
lipsoid.



Proof: The matrix Eλ is positive definite, because it is
a convex combination of positive definite matrices. Thus, (2)
is not satisfied by any x ∈ Rn if K(λ) < 0 and it is only
satisfied by x = mλ if K(λ) = 0. For K(λ) > 0, we have

(x−mλ)
> 1

K(λ)
Eλ(x−mλ) ≤ 1 ,

which is satisfied by a hyperellipsoidal subset of Rn.

The parameters A, B, v, and w are suppressed in the
notation Eλ, as they are clear in the context. The next
proposition gives some further insight on the relation between
overlap of two hyperellipsoids and the set Eλ. Examples for
this newly resulting ellipsoid are shown in Fig. 1.

Proposition 2. Consider two ellipsoids E(A, v) and E(B, w).
Then (1) holds for all λ ∈ (0, 1).

Proof: We consider the inequality

1 ≥ λ(x− v)>A(x− v)
+ (1− λ)(x− w)>B(x− w) .

(3)

The first goal is to show

Eλ = {x ∈ Rn : x satisfies (3)} .

By considering symmetry of A, B and using the notation from
the previous proposition, we get

1 ≤ λ(x− v)>A(x− v) + (1− λ)(x− w)>B(x− w)
= x>[λA+ (1− λ)B]x− 2x>[λ(Av) + (1− λ)Bw]

+ λv>Av + (1− λ)w>Bw
= x>Eλx+ 2x>Eλmλ + λ v>Av + (1− λ)w>Bw .

Completing the square yields

1 +m>λEλmλ

≤ (x−mλ)
>Eλ(x−mλ) + λv>Av + (1− λ)w>Bw ,

which is equivalent to the inequality in (2).

Now, it is easily seen that at least one of the inequalities

(x− v)>A(x− v) ≤ 1 , (x− w)>B(x− w) ≤ 1 (4)

holds for every x ∈ Eλ. Thus, Eλ ⊆ (E(A, v) ∪ E(B, w)).
Consider now an arbitrary x ∈ E(A, v) ∩ E(B, w). For

every such x, both inequalities in (4) are satisfied. Thus, the
inequality in (2) is satisfied and (E(A, v) ∩ E(B, w)) ⊆ Eλ.

Taking both previous Propositions into account, we now
have some deeper insight into the function K(λ) and how it
relates to the overlapping.

Corollary 1. The ellipsoids E(A, v) and E(B, w) share no
common point if and only if there is a λ ∈ (0, 1) with K(λ) <
0.

In order to have a computational convenient way testing this
condition, it is desirable to take a closer look at K(λ), which
is actually a polynomial. Plots of K(λ) for different ellipsoid
constellations are shown in Fig. 2. The following theorem
establishes the convexity of K(λ) on (0, 1). It was originally

Figure 2: Plot of K(λ) for different constellations of ellipsoids.

shown in [10] in the context of discussing a polynomial
directly related to K(λ). Here, we provide a proof based on
simultaneous diagonalization in order to give some insight into
the problem structure.

Proposition 3. Consider two ellipsoids E(A, v) and E(B, w).
Then, the corresponding function K(λ) as defined in Proposi-
tion 1 is convex on (0, 1).

Proof: The function K(λ) can be represented as

K(λ) = 1−

(w − v)>
(

1

1− λ
B−1 +

1

λ
A−1

)−1
(w − v) .

(5)

A discussion and a proof of this representation of K(λ) are
given in the Appendix. First, we consider the one-dimensional
case. In this case for K(λ) to be convex it is sufficient to show
the convexity of

g(λ) = −
(

1

1− λ
+
b

λ

)−1
on (0, 1) for all b ∈ R+. We can reformulate g(λ) as

g(λ) =
λ2 − λ

λ(1− b) + b
.

Its second derivative

g′′(λ) =
2b

(b(1− λ) + λ)3

is positive for every b ∈ R+ and every λ ∈ (0, 1). Thus, g(λ)
is convex on (0, 1).

Now, we generalize this to higher dimensions. Using
simultaneous diagonalization, K(λ) can be represented as

K(λ) = 1− (w − v)>C>
(

1

1− λ
D1 +

1

λ
D2

)−1
C(w − v) ,

where D1, D2 are diagonal matrices and

A−1 = C−1D2C
−> , B−1 = C−1D1C

−> .



Algorithm 1 Checking overlap of two Ellipsoids

procedure OVERLAPTEST(A,B, v, w)
m0 ← Bw;
m1 ← (Av −Bw);
qn ← getQ((A−B),−B, n, n);
for k=0:(n-1) do

R← getR((A−B),−B, n− 1, k);
qk ← getQ((A−B),−B, n, k);
Kk ← Kk + w>B>RBw;
Kk+1 ← Kk+1 + 2 · (Av −Bw)>RBw;
Kk+2 ← Kk+2 + (Av −Bw)>R (Av −Bw);

end for
d(λ)← polynomialGCD(K(λ), q(λ));
K(λ)← K(λ)/d(λ);
q(x)← q(λ)/d(λ);
K(x)← K(λ)

+q(λ)
[
(w>Bw − v>A v)λ+ (1− w>Bw)

]
;

return Countroots(K(λ), 0, 1);
end procedure

D1 and D2 have only positive entries because A−1 and B−1

are positive definite. Thus, there exist ci, bi ∈ R+ such that
K(λ) can be written as

K(λ) = 1 + c1g(λ, b1) + . . .+ cng(λ, bn) ,

where g(λ, bi) is defined in the same way as g(·) with b replaced
by bi. This representation as a weighted sum of convex functions
shows the convexity of K(λ) and completes the proof.

An immediate consequence of this theorem is the fact that
K(λ) has two distinct roots iff the hyperellipsoids do not
overlap. This fact and the convexity of K(λ) can both be used
for implementing an efficient testing algorithm.

IV. ALGORITHMIC IMPLEMENTATION

According to the results of the previous section, it is sufficient
to investigate K(λ) on (0, 1) for checking overlap of two
hyperellipsoids. There are at least two possible strategies for
the algorithmic implementation. First, convex optimization can
be used to find the minimum λ∗ of K(λ) (which is equivalent
to finding the zero of K ′(λ)). Checking the value K(λ∗) yields
the desired result. That is, the ellipsoids do not overlap for
K(λ∗) < 0, they do overlap for K(λ∗) ≥ 0, and they share
only one common point for K(λ∗) = 0.

Second, the fact that K(λ) is a polynomial makes a
direct evaluation of the presented condition possible, because
Sturm’s theorem [15], [16] can be applied. This result from
the field of algebraic geometry provides an algorithm for
counting polynomial roots in a closed interval. In the following,
we will describe the proposed algorithm by motivating and
discussing the use of the modified Leverierre Algorithm and
then describing the application of Sturm’s theorem.

A. Proposed Algorithm

Similarly to our earlier approach [11], the overlap checking
algorithm is divided into two parts. In the first part, we
are interested in obtaining the coefficients of the polynomial
K(λ), which are used in the second part for polynomial root
counting. This part will involve polynomial operations, such as

Algorithm 2 Counting Roots of a Polynomial

procedure COUNTROOTS(K(λ), λl, λr)
p0(λ)← K(λ);
p1(λ)← K ′(λ);
vall,0 ← sign(p0(λl));
valr,0 ← sign(p0(λr));
scl ← 0;
scr ← 0;
k ← 1;
while polynomialRemainder(pk−1, pk) 6= 0 do

vall,k ← sign(pk(λl));
valr,k ← sign(pk(λr));
if vall,k · vall,k−1 < 0 then

scl ← scl + 1;
end if
if valr,k · valr,k−1 < 0 then

scr ← scr + 1;
end if
pk+1 ← polynomialRemainder(pk−1, pk);
k ← k + 1;

end while
return scl − scr;

end procedure

polynomial division and thus, it is not sufficient to merely
provide an evaluation method for K(λ) (which would be
computationally less demanding than the proposed method).

An efficient method for obtaining the coefficients of K(λ)
was presented in [11], which uses simultaneous diagonalization
and thus requires an eigenvalue computation. Due to the Abel-
Ruffini theorem, there is no general algebraic solution for
obtaining these eigenvalues. In order to uphold our claim
of presenting a direct method checking ellipsoid overlap, we
propose a different approach for obtaining the coefficients of
K(λ).

In the following, K(λ) is represented as in Proposition 1
(the computational challenges discussed here would remain if
we would have chosen another representation of K(λ)). In this
situation, we have

m>λEλmλ

= (λAv + (1− λ)Bw)>E−1λ (λAv + (1− λ)Bw)>

Thus, the main challenge is the computation of E−1λ . If (A−B)
is invertible, E−1λ can be reformulated as

E−1λ =(λ(A−B) +B)−1

=(A−B)−1(λI−B(A−B)−1)−1 .

Here, Leverrier algorithm can be used directly for computing
(λI−B(A−B)−1)−1. Unfortunately, (A−B) can be singular.
Thus, the modified version of Leverrier algorithm which was
presented in Sec. II is applied for computing E−1λ directly.

This modified Leverrier algorithm is adapted to computing
the factors of the polynomial K(λ). The resulting procedure
for the entire check for overlap is presented in Algorithm 1.
That is, we compute the determinant and the adjoint of Eλ in
order to compute its inverse. The functions getR and getQ are
computed as described in the recursion schemes for Ri,k and



qi,k in Sec. II, where the first two parameters take the role of
M and A respectively. Both computations involve recursive
calls and can be optimized by a precomputation before the
for-loop.

The procedure Countroots returns the number of roots
of K(λ). The basic idea is applying Sturm’s theorem, which
provides a direct method for polynomial root counting. Thus,
counting the number of real zeros of K(λ) on (0, 1) is possible
without making use of any optimization techniques. Instead, a
polynomial version of the Euclidean algorithm has to be used
in order to generate a so-called Sturm’s sequence. This is the
finite sequence of polynomials p0(λ), . . . , pL(λ) resulting from
polynomial divisions within the Euclidean algorithm (thus, we
can always guarantee L ≤ n). Here, the result from the first
step of the algorithm is used, because performing polynomial
divisions requires the knowledge of the polynomial matrix
coefficients. The resulting sequence can be used to count roots
on an arbitrary interval (λl, λr) by comparing the number of
sign changes in p0(λl), . . . , pL(λl) with the number of sign
changes in p0(λl), . . . , pL(λl). The root counting algorithm is
shown in Algorithm 2.

Finally, we observe that the entire overlap checking method
yields an exact result in the absence of cut-off errors after a
finite number of steps for any constellation of two arbitrary
dimensional ellipsoids. First, the proposed modification of
Leverriere algorithm yields an exact (in the above sense)
result after executing a fixed number of summations, (matrix-)
multiplications, and trace computations. Second, this is also
true for the polynomial Euclidean algorithm, which is the basis
for root counting based on Sturm’s theorem.

B. Analysis and Discussion

The most expensive part in terms of computational com-
plexity of the proposed method is the modified Leverierre
algorithm. The values qi,k and the matrices Ri,k should be
computed at the first call of getQ for all relevant value pairs
(i, k). Otherwise, the recursive computation scheme from Sec. II
would be invoked in every cycle of the for-loop. The entire
recursion scheme has a computational complexity of O(n2 ·M),
where n denotes the dimension of the ellipsoids and M denotes
the computational complexity of matrix multiplication (which
is O(n3) for the straightforward multiplication algorithm). This
is the dominant part, because the polynomial variant of the
Euclidean algorithm (in its straightforward version) is in O(n2).

A precision analysis of the entire algorithm is somewhat
more involved. However, there are some interesting results
concerning the implementation of exact (in the sense that they
assume the absence of cut-off errors) algorithms using floating-
point numbers. In [17], it was established that a very general
class of such algorithms can be adapted to work correctly using
floating-point numbers. We are particularly interested in the
polynomial GCD, which was investigated in [18], [19].

The algorithm in [11] computes the parameters of K ′(λ)
using simultaneous diagonalization which is in O(M). Then
K ′(λ) is checked using a bisection method, which has com-
putational complexity in O

(
n · log

(
ε−1
))

, where ε denotes
the desired precision of the bisection. Thus, it provides a
lower computational complexity, even if (in our new method)
more general algorithms for polynomial matrix inversion would

be used, such as those discussed in [20], [21]. However, in
practical low-dimensional high-precision applications where
log
(
ε−1
)
� n, it might be useful to replace the bisection

by the proposed root-counting approach while computing the
coefficients of K(λ) using simultaneous diagonalization.

V. CONCLUSIONS

A simple condition for checking overlap of arbitrary-
dimensional ellipsoids was discussed in this work. This
condition is based on considering a polynomial that is convex
on (0, 1). We have shown that counting roots in this interval
is sufficient for checking overlap of two hyperellipsoids of
arbitrary dimension. The entire method provided in this work
is direct in the sense that it yields an exact result after a finite
number of steps when numerical round-off errors are neglected.
Thus, our surprising insight is that the Abel-Ruffini theorem
does not present an obstacle towards checking ellipsoid overlap.

However, in its current state it is outperformed in complexity
by methods involving optimization or approximate root finding
techniques. Consequently, further research on polynomial matrix
inversion is needed in order to obtain a direct method with a
comparable computational complexity.

ACKNOWLEDGEMENTS

This work was partially supported by a grant from the German
Research Foundation within the Research Training Group RTG
1194 “Self-organizing Sensor-Actuator-Networks”.

APPENDIX

A representation of K(λ) similar to (5) was originally used
in [22]. Here, we provide a proof which is carried out in
two steps. First, we prove this representation for the scalar
case. Thus, we replace vectors and matrices v, w,A,B by
scalar values v, w,A,B ∈ R. In the scalar case, K(λ) can be
simplified as

K(λ) =1− λv2A− (1− λ)w2B

+ (λAv + (1− λ)Bw)2 · (λA+ (1− λ)B)−1︸ ︷︷ ︸
=:C−1

After using C as the common denominator for the relevant
terms and carrying out some simplifications, we obtain the
desired result

K(λ) =1− λ2v2A2 + (1− λ)2w2B2

C

− λ(1− λ)AB(v2 + w2)

C
+

(λAv + (1− λ)Bw)2

C

=1− λ(1− λ)AB(v − w)2

C

=1− λ(1− λ)AB(v − w)2

(λA+ (1− λ)B)

=1− (v − w)2

((1− λ)−1B−1 + λ−1A−1)
.

In the second step, this result is generalized to the n-dimensional
case by reducing it to n scalar transformations. This reduction
is carried out by applying the simultaneous diagonalization
argument in the same way as in the proof of Proposition 3.



REFERENCES

[1] T. Kerr, “A Two Ellipsoid Overlap Test for Real Time Failure Detection
and Isolation by Confidence Regions,” in 1974 IEEE Conference on
Decision and Control including the 13th Symposium on Adaptive
Processes, vol. 13. IEEE, 1974, pp. 735–742.

[2] T. H. Kerr, “Real-time Failure Detection: A Nonlinear Optimization
Problem That Yields a Two-Ellipsoid Overlap Test,” Journal of
Optimization Theory and Applications, vol. 22, no. 4, pp. 509–536,
Aug. 1977.

[3] T. Kerr, “Statistical Analysis of a Two-Ellipsoid Overlap Test for
Real-Time Failure Detection,” IEEE Transactions on Automatic Control,
vol. 25, no. 4, pp. 762–773, Aug. 1980.

[4] W. Wang, J. Wang, and M.-S. Kim, “An Algebraic Condition for the
Separation of Two Ellipsoids,” Computer Aided Geometric Design,
vol. 18, no. 6, pp. 531–539, Jul. 2001.

[5] S. Alfano and M. L. Greer, “Determining if Two Solid Ellipsoids
Intersect,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 1,
pp. 106–110, Jan. 2003.

[6] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim, “Continuous Collision
Detection for Two Moving Elliptic Disks,” IEEE Transactions on
Robotics, vol. 22, no. 2, pp. 213–224, Apr. 2006.

[7] X. Jia, Y.-K. Choi, B. Mourrain, and W. Wang, “An algebraic approach
to continuous collision detection for ellipsoids,” Computer Aided
Geometric Design, vol. 28, no. 3, pp. 164–176, Mar. 2011.

[8] Y.-K. Choi, J.-W. Chang, W. Wang, M.-S. Kim, and G. Elber,
“Continuous collision detection for ellipsoids.” IEEE transactions on
visualization and computer graphics, vol. 15, no. 2, pp. 311–24, Jan.
2009.

[9] A. A. Kurzhanskiy and P. Varaiya, Ellipsoidal Toolbox Manual, 2006-
2008.

[10] J. W. Perram and M. Wertheim, “Statistical Mechanics of Hard
Ellipsoids. I. Overlap Algorithm and the Contact Function,” Journal of
Computational Physics, vol. 58, no. 3, pp. 409–416, May 1985.

[11] U. D. Hanebeck, “Lokalisierung eines mobilen Roboters mittels
effizienter Auswertung von Sensordaten und mengenbasierter Zus-
tandsschätzung,” Dissertation, TU München, Referent: G. Schmidt,

Korreferent: E. D. Dickmanns, Fortschrittsberichte VDI, Reihe 8: Meß-,
Steuerungs- und Regelungstechnik, Nr. 643, VDI Verlag, Düsseldorf,
1997, iSBN 3-18-364308-1.

[12] I. Gilitschenski and U. D. Hanebeck, “A Robust Computational Test for
Overlap of Two Arbitrary-dimensional Ellipsoids in Fault-Detection of
Kalman Filters,” in Proceedings of the 15th International Conference
on Information Fusion (Fusion 2012), Singapore, Jul. 2012.

[13] M. S. Fadali and A. Visioli, Digital Control Engineering: Analysis and
Design. Academic Press, 2012.

[14] B. Mertzios, “Leverrier’s Algorithm for Singular Systems,” IEEE
Transactions on Automatic Control, vol. 29, no. 7, pp. 652 – 653, Jul.
1984.

[15] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic
Geometry, 2nd ed. Springer, 2006.

[16] M. Coste, An Introduction to Semialgebraic Geometry, 2002.

[17] S. Kiyoshi and M. Sweedler, “A Theory of Stabilizing Algebraic
Algorithms,” Mathematical Sciences Institute, Cornell University, Tech.
Rep., 1985.

[18] P. Khungurn, “Shirayanagi-Sweedler Algebraic Algorithm Stabilization
and Polynomial GCD Algorithms,” Master’s Thesis, Massachusetts
Institute of Technology, 2007.

[19] P. Khungurn, H. Sekigawa, and K. Shirayanagi, “Minimum Converging
Precision of the QR-Factorization Algorithm for Real Polynomial GCD,”
in Proceedings of the 2007 international symposium on Symbolic and
algebraic computation - ISSAC ’07. New York, New York, USA:
ACM Press, Jul. 2007, p. 227.

[20] A. Storjohann, “On the Complexity of Inverting Integer and Polynomial
Matrices,” Computational Complexity (accepted), 2008.

[21] C.-P. Jeannerod and G. Villard, “Essentially Optimal Computation of
the Inverse of Generic Polynomial Matrices,” Journal of Complexity,
vol. 21, no. 1, pp. 72–86, Feb. 2005.

[22] L. Ros, A. Sabater, and F. Thomas, “An Ellipsoidal Calculus Based on
Propagation and Fusion.” IEEE Transactions on Systems, Man, and
Cybernetics. Part B, Cybernetics, vol. 32, no. 4, pp. 430–42, Jan. 2002.


	Introduction
	A Modified Leverrier Algorithm
	Proposed Condition
	Algorithmic Implementation
	Proposed Algorithm
	Analysis and Discussion

	Conclusions
	Appendix
	References

