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Abstract—The wrapped normal distribution arises when the
density of a one-dimensional normal distribution is wrapped
around the circle infinitely many times. At first look, evaluation
of its probability density function appears tedious as an infinite
series is involved. In this paper, we investigate the evaluation
of two truncated series representations. As one representation
performs well for small uncertainties, whereas the other performs
well for large uncertainties, we show that in all cases a small
number of summands is sufficient to achieve high accuracy.

I. INTRODUCTION

The wrapped normal (WN) distribution is one of the most
widely used distributions in circular statistics. It is obtained by
wrapping the normal distribution around the unit circle and
adding all probability mass wrapped to the same point (see
Fig. 1). This is equivalent to defining a normally distributed
random variable X and considering the wrapped random
variable X mod 2π.

The WN distribution has been used in a variety of appli-
cations. These applications include nonlinear circular filtering
[1], [2], constrained object tracking [3], speech processing [4],
[5], and bearings-only tracking [6].

However, evaluation of the WN probability density function
can appear difficult because it involves an infinite series. This
is one of the main reasons why many authors (such as [7], [8],
[9], [10], [11]) use the von Mises distribution instead. It is even
sometimes referred to as the circular normal distribution [12].
Collet et al. published some results on discriminating between
wrapped normal and von Mises distributions [13]. Their results
were further refined by [14]. These analyses indicate that
several hundred samples are necessary to distinguish between
the two distributions. Therefore the von Mises distribution
can be considered as a sufficiently good approximation in
applications where sample sizes are small, but may prove
insufficient in applications with large sample sizes.

In this paper, we will show that a very accurate numerical
evaluation of the WN probability density function can be per-
formed with little effort. Some authors have briefly discussed
approximation of the WN probability density function, but
to our knowledge, no one has published any proof for error
bounds, even though the WN distribution has been known
and used for a long time [15]. Jammalamadaka and Sengupta
simply state [12, Sec. 2.2.6]

It is clear that the density can be adequately

Figure 1. The wrapped normal distribution is obtained by wrapping a normal
distribution around the unit circle.

approximated by just the first few terms of the infinite
series, depending on the value of σ2.

In their book on directional statistics, Mardia and Jupp [16,
Sec. 3.5] suggest

For practical purposes, the density φw can be
approximated adequately by the first three terms of
(3.5.66) [gn in this paper] when σ2 > 2π while for
σ2 ≤ 2π the term with k = of (3.5.64) [fn in this
paper] gives a reasonable approximation.

While this is practical advice, there is no theoretical justifica-
tion for using this approximation and there is no quantification
of the error incurred by this method. Other classic publications
on circular statistics such as the book by Batschelet [17,
Sec. 15.4] and the book by Fisher [18, Sec. 3.3.5] do not
give any details about evaluation the WN probability density
function and suggest the use of the von Mises distribution
instead.

II. THE WRAPPED NORMAL DISTRIBUTION

The wrapped normal distribution [12, Sec. 2.2.6], [16, Sec.
3.5] is defined by the probability density function (pdf)

f(x;µ, σ) =
1√
2πσ

∞∑
k=−∞

exp

(
− (x+ 2πk − µ)2

2σ2

)
,

with x ∈ [0, 2π), location parameter µ ∈ [0, 2π), and
uncertainty parameter σ > 0. Because the summands of the



series converge to zero, it is natural to approximate the pdf
with a truncated series

f(x;µ, σ) ≈ fn(x;µ, σ)

=
1√
2πσ

n∑
k=−n

exp

(
− (x+ 2πk − µ)2

2σ2

)
,

where only 2n+ 1 summands are considered. We will inves-
tigate the choice of n (depending on σ) in this paper.

As we will later prove, the series representation defined
above yields a good approximation for small values of σ only.
For this reason, we introduce a second representation, which
yields good approximations for large values of σ. The pdf
of a WN distribution is closely related to the Jacobi theta
function [19]. This leads to another representation of the pdf
[12, eq. (2.2.15)]

g(x;µ, σ) =
1

2π

(
1 + 2

∞∑
k=1

ρk
2

cos(k(x− µ))

)
,

where ρ = exp(−σ2/2) . Analogous to fn, we define a
truncated version

g(x;µ, σ) ≈ gn(x;µ, σ)

=
1

2π

(
1 + 2

n∑
k=1

ρk
2

cos(k(x− µ))

)

that only considers the first n summands.1

III. EMPIRICAL RESULTS

We implemented the truncated series fn and gn as well as
the exact solution (which increases n until the value of the
pdf does not change anymore because of the limited accuracy
of the data type). We used the IEEE 754 double data type for
all variables. It consists of 1 bit for the sign, 11 bit for the
exponent, and 52 bit for the fraction [20]. Thus, it is accurate
to approximately 15 decimal digits.

For x, µ ∈ [0, 2π), the error is largest for µ = 0 and
x → 2π in both approximations (see Fig. 2). We will later
show this fact in the theoretical section. Thus, we com-
pare the error ef (n, σ) = |f(2π; 0;σ) − fn(2π, 0, σ)| and
eg(n, σ) = |g(2π; 0;σ)−gn(2π, 0, σ)| respectively. The results
for n = 1, 2, . . . , 11 are depicted in Fig. 3. Furthermore, we
include a comparison to the uniform distribution with pdf
fu(x) = 1

2π , which is also a special case of gn for n = 0.
As can be seen, the uniform distribution is accurate up to
numerical precision for approximately σ ≥ 9.

We empirically determined the combined approximation
based on fn and gn for different accuracies (see Table I).

1We treat the parameter n in fn and gn the same way, although the
evaluation of fn involves 2n + 1 summands whereas the evaluation of gn
only involves n summands. However, the computational effort for evaluation
of a single summand of gn is higher, which roughly negates this difference.

accuracy range approximation

0 < σ < 1.34 f0(x;µ, σ)
1E-5 1.34 ≤ σ < 2.28 f1(x;µ, σ)

2.28 ≤ σ < 4.56 g1(x;µ, σ)
4.56 ≤ σ g0(x;µ, σ)

0 < σ < 0.93 f0(x;µ, σ)
0.93 ≤ σ < 1.89 f1(x;µ, σ)

1E-10 1.89 ≤ σ < 2.21 f2(x;µ, σ)
2.21 ≤ σ < 3.31 g2(x;µ, σ)
3.31 ≤ σ < 6.62 g1(x;µ, σ)

6.62 ≤ σ g0(x;µ, σ)

0 < σ < 0.76 f0(x;µ, σ)
0.76 ≤ σ < 1.53 f1(x;µ, σ)
1.53 ≤ σ < 2.31 f2(x;µ, σ)

1E-15 2.31 ≤ σ < 2.73 g3(x;µ, σ)
2.73 ≤ σ < 4.09 g2(x;µ, σ)
4.09 ≤ σ < 8.17 g1(x;µ, σ)

8.17 ≤ σ g1(x;µ, σ)

Table I
COMBINED APPROXIMATIONS FOR DIFFERENT ACCURACIES.

IV. THEORETICAL RESULTS

Before we analyze the approximation error of the different
approaches, we prove an inequality for the error function.

Lemma 1. For x > 1, the error function fulfills the inequality
1− erf(x) ≤ e−x2

√
π

.

Proof: We use the continued fraction representation as
given in [19, 7.1.14]

erf(x) = 1− e−x
2

√
π

x+ 1
2x+ 2

x+ 3

2x+ 4
x+···


⇒ 1− erf(x) =

e−x
2

√
π

x+ 1
2x+ 2

x+ 3

2x+ 4
x+···


⇒
x>1

1− erf(x) ≤ e−x
2

√
π

A. Representation Based on Wrapped Density

We consider the approximation fn(x;µ, σ) ≈ f(x;µ, σ).
In the following proposition, we will show that the error
decreases exponentially in n.

Proposition 1. For x, µ ∈ [0, 2π) and n > 1+ σ√
2π

, the error
ef (n, σ) = |fn(x;µ, σ)− f(x;µ, σ)| has an upper bound

ef (n, σ) <
exp

(
− (π

√
2(n−1))2
σ2

)
2π3/2

.
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Figure 2. Empirical results depicting the error for different values of n for ef (n, σ) with σ = 5 (left) and eg(n, σ) with σ = 0.5 (right). Note that some
points are rounded to zero because of the limited accuracy of the floating point arithmetic. These values are not depicted, because it is not possible to display
them in a logarithmic plot.
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Figure 3. Empirical results depicting the error for different values of n for ef (n, σ) (left) and eg(n, σ) (right). We set the WN parameter µ = 0 and
x = 2π.

Proof: We use the fact that σ > 0 and exp(·) > 0, and
get

ef (n, σ) = |fn(x;µ, σ)− f(x;µ, σ)|

=

∣∣∣∣∣ 1√
2πσ

n∑
k=−n

exp

(
− (x− µ− 2kπ)2

2σ2

)

− 1√
2πσ

∞∑
k=−∞

exp

(
− (x− µ− 2kπ)2

2σ2

)∣∣∣∣∣
=
σ>0

1√
2πσ

∣∣∣∣∣
−n−1∑
k=−∞

exp

(
− (x− µ− 2kπ)2

2σ2

)

+

∞∑
k=n+1

exp

(
− (x− µ− 2kπ)2

2σ2

)∣∣∣∣∣
=

exp(·)>0

1√
2πσ

(−n−1∑
k=−∞

exp

(
− (x− µ− 2kπ)2

2σ2

)

+

∞∑
k=n+1

exp

(
− (x− µ− 2kπ)2

2σ2

))
.

Now we make use of the fact that µ and x are in the same
interval of length 2π

ef (n, σ) <
|x−µ|<2π

1√
2πσ

(−n−1∑
k=−∞

exp

(
− (−2π − 2kπ)2

2σ2

)

+

∞∑
k=n+1

exp

(
− (2π − 2kπ)2

2σ2

))

=
1√
2πσ

(−n−1∑
k=−∞

exp

(
− (−2(k + 1)π)2

2σ2

)

+

∞∑
k=n+1

exp

(
− (−2(k − 1)π)2

2σ2

))

=
1√
2πσ

( −n∑
k=−∞

exp

(
− (2kπ)2

2σ2

)

+

∞∑
k=n

exp

(
− (2kπ)2

2σ2

))
=: êf (n, σ) .



This allows us to simplify the expression by combining the
two series into a single series

êf (n, σ) =
2√
2πσ

∞∑
k=n

exp

(
− (2kπ)2

2σ2

)
.

We find an upper bound by integration

êf (n, σ) ≤
2√
2πσ

∫ ∞
k=n−1

exp

(
− (2kπ)2

2σ2

)
dk

=
[19, eq. (7.1.2)]

(
1− erf

(
π
√
2 (n−1)
σ

))
2π

≤
Lemma 1

exp
(
− (π

√
2(n−1))2
σ2

)
2π3/2

,

where we use the assumption π
√
2 (n−1)
σ > 1 in order to apply

Lemma 1.

B. Representation Based on Theta Function

In the following, we consider the approximation
gn(x;µ, σ) ≈ g(x;µ, σ). In this case, the error decreases
exponentially in n as well.

Proposition 2. For x, µ ∈ [0, 2π) and n >
√
2/σ, the error

eg(n, σ) = |gn(x;µ, σ)− g(x;µ, σ)| has an upper bound

eg(n, σ) <
exp(−n2σ2/2)√

2πσ
.

Proof: We start with some simplifications

eg(n, σ)

= |gn(x;µ, σ)− g(x;µ, σ)|

=

∣∣∣∣∣ 12π
(
1 + 2

n∑
k=1

ρk
2

cos(k(x− µ))

)

− 1

2π

(
1 + 2

∞∑
k=1

ρk
2

cos(k(x− µ))

)∣∣∣∣∣
=

1

π

∣∣∣∣∣
n∑
k=1

ρk
2

cos(k(x− µ))−
∞∑
k=1

ρk
2

cos(k(x− µ))

∣∣∣∣∣
=

1

π

∣∣∣∣∣
∞∑

k=n+1

ρk
2

cos(k(x− µ))

∣∣∣∣∣ ,
use the triangle inequality and the fact that | cos(·)| ≤ 1

eg(n, σ) ≤
1

π

∞∑
k=n+1

ρk
2

=: êg(n, σ) .

Now we find an upper bound by integration and simplify

êg(n, σ) ≤
1

π

∫ ∞
n

ρk
2

dk

=
[19, eq. (7.1.2)]

1

π
·
√
π erfc(n

√
− log(ρ))

2
√

(− log(ρ))

=
1

π
·
√
π erfc(n

√
σ2/2)

2
√
σ2/2

=
1− erf(nσ/

√
2)√

2πσ

≤
Lemma 1

exp(−n2σ2/2)√
2πσ

,

where we use the assumption nσ/
√
2 > 1 in order to apply

Lemma 1.

C. Combination of Both Approaches

For a given error threshold ẽ > 0 and a given σ > 0,
we want to obtain the lowest possible n that guarantees that
the error threshold is not exceeded. Solving the bound from
Proposition 1 for n and taking the precondition for n into
account yields

n ≥ 1 +
σ

π

√
− log(4π3ẽ2) ∧ n > 1 +

σ√
2π

.

By applying the method to the results of Proposition 2, we
obtain

n ≥ 1

σ

√
− log(2π2σ2ẽ2) ∧ n >

√
2

σ
.

Thus, we define

nf := max

(
1 +

σ

π

√
− log(4π3ẽ2) , 1 +

σ√
2π

)
,

ng := max

(
1

σ

√
− log(2π2σ2ẽ2) ,

√
2

σ

)
.

Consequently, we set n := dmin(nf , ng)e and choose the ac-
cording method for approximation. Examples with ẽ = 1E−5
and ẽ = 1E − 15 are given in Fig. 4. Note that the required
n is slightly higher than the empirically obtained values given
in Table I, because the theoretical bounds are not tight.

V. CONCLUSION

In this paper, we have shown theoretical bounds on two
different representations of the wrapped normal probability
density function based on truncated infinite series. In both
cases, the error decreases exponentially with increasing num-
ber of summands n. Furthermore, we have shown that one
representation performs well for small σ whereas the other
performs well for large σ. This motivates their combined use
depending on the value of σ. Our empirical results match
well with the theoretical conclusions. We have proposed
piecewise approximations based on the two representations
with a varying number of summands for several levels of
accuracy.



Figure 4. Theoretical results for minimum value of n. We consider ẽ =
1E−5 and ẽ = 1E−15. The required n by combining both approximations
is shaded in dark green and light green respectively.
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