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Abstract—This paper presents a novel algorithm for the
estimation of planar rigid-body motions. It is based on using a
probability distribution that is inherently defined on the non-
linear manifold representing these motions and on proposing
a deterministic sampling scheme that makes consideration of
complicated system models possible. Furthermore, we show
that the measurement update for a manifold equivalent to
noisy direct measurements can be carried out in closed form.
Thus, the resulting method avoids errors made due to local
linearization and outperforms methods that wrongly assume
Gaussian distributions, which we show by comparing the
proposed filter to the UKF.

I. INTRODUCTION

Estimation of rigid-body motions is an inherently nonlinear
filtering problem that occurs in a wide area of applications
such as robotics, intelligent mobility, or mixed and augmented
reality. The underlying nonlinearity is not necessarily due
to complicated system dynamics but a mere consequence of
the fact that the domain of rigid-body motions is nonlinear
itself. Thus, a sound consideration of this underlying domain
promises to yield robust and intuitively suitable dynamic state
estimation algorithms.

Most approaches that are based on some nonlinear variant
of the Kalman filter usually make use of local linearity of the
underlying manifold. This is justified whenever all arising
noise is sufficiently low, and thus, the underlying state space
can be approximated by a linear space. In that situation, it is
may be well justified to make use of approaches assuming
Gaussian uncertainty. In order to ensure the resulting estimate
to be valid, projection techniques are usually employed such
as those discussed in [1]. These approaches may perform
well in some practical applications. However, their inherent
problem is the lack of a probabilistic interpretation. Sound
probabilistic consideration of nonlinear domains is made
possible by making use of directional statistics [2], [3],
which is a subfield of statistics that considers quantities and
probability distributions defined on nonlinear manifolds such
as circles, spheres or—as considered in this work—rigid-body
motions.

The filter presented in this work is based on [4]. It uses unit
dual quaternions for representation of rigid-body motions.
Dual quaternions are a natural extension of quaternions, which
was proposed by Clifford in [5]. This choice makes it possible

*1. Gilitschenski is with Autonomous Systems Laboratory (ASL), Institute
of Robotics and Intelligent Systems, Swiss Federal Institute of Technology
(ETH) Zurich, 8092 Zurich, Switzerland (e-mail: igilitschenski @ethz.ch).
G. Kurz and U. D. Hanebeck are with Intelligent Sensor-Actuator-Systems
Laboratory (ISAS), Institute of Anthropomatics and Robotics, Karlsruhe In-
stitute of Technology (KIT), 76131 Karlsruhe, Germany (e-mail: gerhard.
kurz@kit.edu; uwe.hanebeck @ieee.org).

to encode position and orientation into four values in the
planar case (or eight values in the three-dimensional case).
This representation is used within a probability distribution
for representing uncertain rigid-body motions, which was
proposed in [6].

Building upon this theory, this paper has two main
contributions. First, a deterministic sampling scheme for the
considered distribution is proposed, i.e., for deterministically
approximating the continuous distribution by a discrete
distribution that is defined on the same domain. It is shown
how deterministic sampling of the proposed distribution can
be reduced to deterministically sampling a Gaussian and a
Bingham distribution [7], which is an antipodally symmetric
distribution on the unit hypersphere. Second, the resulting
sampling scheme is used for developing a sample-based filter
that is reminiscent of Gaussian sigma-point filters, such as
the unscented Kalman filter (UKF) [8]. The resulting filter is
not only capable of considering non-identity system models
but also makes a closed-form measurement update possible.

Due to the fact that local linearization is well justified
in case of sufficiently low noise, there has been also a
number of works about filters based on this assumption
for performing estimation of quantities defined on nonlinear
domains. For example, in the case of orientation, quaternion-
based filters have been discussed in [9], [10], [11], [12], [13].
Furthermore, pose estimation based on dual-quaternions has
been investigated in [14]. One of the earliest approaches that
uses directional statistics for dynamic state estimation was
proposed in [15]. However, most of these approaches have
been developed in the recent years. This involves algorithms
for estimating circular quantities [16], [17] or orientations
[18], [7]. For consideration of rigid-body motions, there are
two particularly notable works. In [19], projected Gaussians
are used for uncertainty representation. This approach has also
the advantage of using dual-quaternions, and thus, offering
a compact representation. However, it suffers from the fact
that the Bayes update is not possible in closed-form. In [20],
a probability distribution was proposed that is similar to
the distribution used in this work. However, this work does
not involve a deterministic sampling scheme and requires
the use of highly redundant rotation matrices for orientation
representation.

The remainder of this paper is structured as follows. In
Sec. I we provide an introduction to representing rigid-
body motions with dual quaternions and we also revisit the
probability distribution that will be used for representing
uncertainties for this kind of motions. Sec. III provides a
hybrid deterministic sampling scheme for this distribution



that can be used for approximate numerical integration when
computing expectation values. All of this is brought together
in Sec. IV for developing the new filter that is based on
a prediction and update step. The filter is evaluated and
compared against the UKF in Sec. V. The presented results
are discussed and concluded in Sec. VI.

II. UNCERTAIN RIGID-BODY MOTIONS

For deriving of our filter, we revisit two preliminary topics.
First, we explain the concept of dual quaternions and their
applicability for the representation of rigid-body motions. The
group that is used for representation of these motions is known
as the Special Euclidean Group (it is abbreviated as SE(3)
for the 3d case and SE(2) for the 2d case). A multiplicative
subgroup of the dual quaternions is derived that can be
thought of as a double cover of SE(2). It is assumed that the
reader is familiar with quaternions and their applicability to
representing rotations. A good introduction can be found in
[21]. Second, a probability distribution is revisited that can
be used for the representation of this kind of motions. It is
based on partially conditioning a 4d Gaussian distribution.
Thus, it is related to both, the Gaussian distribution and the
Bingham distribution [22], which arises by conditioning a
zero-mean Gaussian vector to unit length.

A. Representation of Planar Rigid-Body Motions

Dual quaternions combine the concept of quaternions and
dual numbers. The latter are an extension of the real numbers
that introduces a dual unit € which is characterized by the
nilpotency property €2 = 0. In combination with quaternions,
the dual unit ¢ commutes with quaternion units i, j, k, e.g.,
€i = ie. The resulting dual quaternion can be described by
the entries of a vector a € R, i.e.,

a(l) + a(2)i + a(g)j + a(4)k
+ s(a(5) + a(G)i + (L(7)j + a(S)k) .

Addition of dual quaternions is usually defined as
component-wise addition. Multiplication is defined as

- (2)a )
Qg bd

_ Qq@bq
Qq®bd+gd®bq .

Here & denotes the well-known quaternion multiplication.
From this definition, it is easily seen that both, quaternions
and dual numbers can be thought of as a special case of dual
quaternions.

Consider a dual quaternion g = (g;— ,Q;)T, where a,, is
the quaternion representing the non-dual part and g, is the
quaternion representing the dual part. Then, its inverse a !
is given by

al=qa"B(1-cHBa,Ba,"),

where a, ! denotes the quaternion inverse of a,,. From this, it
can be seen that the inverse does not always exist. A necessary
and sufficient condition for its existence is a,, # 0.

This formalism is sufficient for defining representations
of rigid-body motions using dual quaternions. First, a pure
rotation is represented using unit quaternions in the usual
way. That is, a rotation with angle # around axis x =
(M, 2 23)) is (assuming ||z|| = 1) represented by the
quaternion

0 0
s = O (2); @ k) -sin( =
cos<2)+(a: 1+ )+ k) 51n<2) .

The dual part becomes important as soon as translations come
into play. A pure translation ¢ = (t,,t,,%,) is represented by
dual quaternion

L+e(tpittyjt+tk) .

Combinations of rotations and translations are obtained using
dual quaternion multiplication. Using a suitable adaption
of the concept of a norm, it can be shown that all dual
quaternions involved in this representation have unit length.
Furthermore, the dual quaternions a and —a represent the
same rigid-body motion. Besides that, the representation is
unique. Thus, unit dual quaternions are a double cover of the
SE(3).

The restriction to the planar case can be thought of as a
combination of rotations around the z-axes and translations
in the z-y-plane. That is, the translation is represented by
the dual quaternion

1, . .
1+€§(tml+ty+_])

and the rotation is represented by the quaternion

cos (%) + sin (%) k.

As noted above, dual quaternion multiplication is used
to combine rotations and translations. A rotation with a
subsequent translation is given by

gt - foos (5) + i (5)]
—oon () +m (§)
# 3l (eon (5) teroin(5) )
#eos ()t sin (3) 1)1

Now it is easily seen, that the resulting representation of
planar rigid-body motions requires only four values. Thus, 4d
vectors will be used to denote dual quaternions representing
planar rigid-body motions. Furthermore, the first two vectors
are required to have unit length, i.e., a rigid-body motion is
represented by a € S' x R? C R*, where S! denotes the unit
circle parametrized as vectors of unit length. Accordingly, our
definition of the multiplication of two unit dual quaternions
a, and a, can be simplified to

(1) (1) (2) ()
(1) (2)+ (2) é)
(1) (3) (2) (4)+a(3) gl)+a(4) ()
() (4)+ (2) (3)_ (3) a? 4 (4) (1)
a3 ay "ag



Furthermore, there exists a matrix representation of the
considered subgroup of dual quaternions. For a dual quater-
nion a € R*, the corresponding matrix representation is given
by

a® a® 0 0

—a®@ M 0 0
Qu=1|_,0 @ L0 _,@

Ca@® g 4@ 4

B. Uncertain Planar Rigid-Body Motions

For representing uncertainty over the considered subgroup
of unit dual-quaternions, it is necessary to use a probability
distribution that accounts for the fact that ¢ and —a represent
the same rigid-body motion. Thus, we propose to use a
distribution that is characterized by the p.d.f.

1
f(£)=m

This distribution naturally arises when conditioning the first
two entries of a 4d Gaussian to unit length, and thus, it
naturally satisfies antipodal symmetry. One of the challenges
involved in handling this distribution is the computation of
the normalization constant N (-) because a direct approach
requires numerical integration over S' x R?. Thus, we will
show how to simplify this computation.

As a first step, one can observe that the above p.d.f. can
be written as

exp(z' Cz) , ze€S'xR?

flz,,z,) =exp (z] Trz,
+ (2, — Toz,) " Cs(z, — Taz,))
-N(C)™",

where z, € S', 2z, € R? and T; = C; — CQTC§1(32,
Ty = 7C§1C2 with C;, Cq, C3 € R?*2 such that

c— <01 CJ)
Cy Cj
From this representation it is now seen that C; needs to be
symmetric, Co may be arbitrary, and C3 has to be symmetric
negative definite in order to ensure that f(z,,z,) is a well-
defined probability density.
From this p.d.f. representation, one can also observe

relationships to other distributions. Marginalizing out z,
yields a Bingham distribution density, i.e.,

1 T
z,) = v —7m explzy Trz,
fa) = Fpy o0l Taz,)
Furthermore, z, given z, = a follows a Gaussian distribution
N (Taa, Cs3). These relationships can now be used for
simplifying the computation of the normalization constant,
which can be obtained as

-1

N(C) = 2| det (—C;) - Ng(T) ,

where Np(+) denotes the normalization constant of a Bingham
distribution. This is still computationally burdensome but it
can effectively be addressed with methods such as saddlepoint

approximations [20], [23]. Furthermore, it is now easy to
generate random samples r; = (7, ,, ﬁt’i)T of the proposed
distribution by generating random samples r ; of a Bingham
distribution (with parameter matrix T;) and then obtaining
r,,; by sampling from N(Tar, ;, —0.5C3).

A procedure for estimating the parameter matrix C from
samples r; = (r, ;, 7, ;)" (withi =1,...,m) can be derived
by obtaining an estimate of T first. This is carried out by
applying a method for estimation of Bingham distribution
parameters (e.g., numerical moment matching as is done in
[7]) to determine Tsir Then, multivariate linear regression can
be used for obtaining Ty and Cg3 (see [24, Theorem 8.2.1]).
The entire resulting procedure is visualized in Algorithm 1,
where EstimateBingham is used to denote a procedure for
estimating Bingham distribution parameters.

Algorithm 1 Parameter Estimation

1: procedure ESTIMATEPARAMETERS(7y, ..., I,),)
2: Ty < EstimateBingham(r, ¢, ...,7, ,,);
m T . ’
3: DI P P T
m .
4 ;2 — Zi:l Zs,i . fs’i»
5 Ty 212;1;

. 2 & .
6: Cg — W ; (zt,i — T2£S,i>

—1
) T
: (Et,i - T2Zs,i) )
Cro—Caly
C; + T, +CjC5'Cy;

. A Cc, CJ
: C - 22
5 - (02 Cg)

10: return C;
11: end procedure

Handling of weighted samples is achieved by using a
suitable variant of the Bingham parameter estimator and
introducing weights in the computation of 31, 35, and Cs.

III. DETERMINISTIC SAMPLING

Computing expectations plays a crucial role in statistical
algorithms, e.g., for parameter estimation. In case of the distri-
bution considered in the preceding section, this unfortunately
requires numerical integration involving repeated evaluations
of the probability density. In order to make approximate
computation of E(g(z)) (where z is assumed to follow the
distribution discussed above) feasible, we propose an easy
scheme that approximates the continuous distribution defined
above by a discrete distribution defined on the same domain.

Our proposed scheme is based on deterministic sampling
schemes for both, the Bingham and the Gaussian distribution
by making use of the relationship that was discussed in the
preceding section. In case of the Gaussian, there are several
deterministic schemes that have been used in the context of
stochastic filtering. Some of them are listed in Table I. For
the Bingham distribution, a sampling scheme reminiscent of
the UKF has been proposed in [7].



Scheme Samples  References
Gauss Filter L-n [25]

S2KF L [26]
Spherical Simplex UKF n+2 [27]

UKF 2n+1 [8], [28], [29]

TABLE I: Sampling schemes for approximating Gaussians of
dimension n. Whenever applicable, the number of samples
may be influenced by providing a user-defined parameter
LeN.

The resulting deterministic sampling scheme is in some
sense similar to the random sampling approach proposed
above. First, deterministic sampling of the Bingham distribu-
tion is performed which yields samples b, (¢ = 1,...,n)
with corresponding weights w;, ;. Then, a N(0, —0.5C3)
distribution is deterministically sampled which yields the
sample set n; (j = 1,...,m) with corresponding weights
w,, ;. Finally, for each sample of the Bingham distribution,
we create a copy of the entire Gaussian sample set and
reposition it such that its mean becomes T2b,. The weights
for each resulting sample are computed as a product of
the respective sample weights. This yields a set of N - M
deterministically obtained samples. This entire procedure is
given in Algorithm 2. There, SampleBingham and Sample-
Gaussian represent procedures for deterministic sampling
of the Bingham and the Gaussian distributions respectively.
Furthermore, the method ExtractSubmatrices is a short form
notation for extracting C; from C.

Algorithm 2 Deterministic Sampling

1: procedure DETERMINISTICSAMPLING(C)
2: (Cq, C5 C3) « ExtractSubmatrices(C)

3 T, + C, - CJC;'C,

4: Ty + —Cgng

5: (b;» wp,i)i=1,....n < SampleBingham(T;)
6 (n;, Wn,i)i=1,...,m < SampleGaussian(0, —1C3)
7 k<« 1;

8 for i € {1,...,N} do

9 for j € {1,...,M} do

10 8 Ej+T2'Qi ’

11: Wg < Wyp,; * Wp 55

12: k+—k+1;

13: end for

14: end for

1s: return (wg, Sy )k=1,... . N-M;

16: end procedure

IV. STOCHASTIC FILTER FOR PLANAR RIGID-BODY
MOTIONS

The filter proposed in this work assumes the considered
system to follow the dynamics
Liy1 = a(z,, w,) ,

where z,, w, € S! x R? are dual quaternions representing
the system state and the system noise. Furthermore, for

better representation we assume a fairly simple noisy direct
measurement model, i.e.,

zy =z, By, ,

where the measurement z, and the noise terms v, are
assumed to be defined on the same domain. Consideration
of more complicated noise models is possible by using the
methodology described in [30].

As usual, the proposed filter is subdivided into a prediction
and an update step. All arising uncertainties are modeled using
the distribution discussed above. That is, the current estimate
is represented as a density of the considered distribution model
in terms of its parameter matrix C7. The noise distributions
are represented as C* and C", respectively (we assume time-
invariant noise models for notational convenience). A point
estimate zy can be obtained by computing the mode z{ ,
of the corresponding Bingham distribution (which is also
discussed in [7]) and then computing Ts.

A. Prediction

The prediction algorithm is subdivided into three steps.
First, we perform deterministic sampling of the distribution
representing the system state. Second, these samples are prop-
agated through the system model a(-, -). Finally, parameter
estimation is performed in order to obtain a prediction of
the system state in terms of the parameter matrix C} 1 1- The
entire resulting procedure is shown in Algorithm 3.

Algorithm 3 Prediction

1: procedure PREDICT(CY¢, CV)

2 (§w7iapx,i)1ﬂ=1,...,m < DeterministicSampling(C¥)
3 (§w7qj;pw,i)i:1,...,m + DeterministicSampling(C")
4 k<« 1;

5 for i € {1,...,m} do

6: for j € {1,...,m} do

7: Pk < DPz,i * Pw,j>

8 Sp 4 a(8y 458y 4)5

9: k+—k+1,

10: end for

11: end for

12: C?,, « EstimateParameters((s;,D;)i=1,...,m?)
13 return C}_;

14: end procedure

At this point, it is important to note that this entire step is
approximate even for very simple system models. A useful
example that provides some understanding of this problem is
obtained by considering the dual quaternion product a; B a,
of two random vectors a;, a, that are distributed according to
the considered distribution. It can be shown, that this product
is in general a random variable that follows a probability
distribution that differs from the considered model.

B. Update

For derivation of the update step, the observation model is
reformulated as follows

—1 _
z, Hz=u, .



Then, using Bayes theorem, the updated density f; is obtained
as

fi(@) o fU (a7 B 2) - f(z) ,

where fF and f? denote the densities of 2! and v, respec-
tively. Our goal is to show that f{ belongs to the considered
distribution. Furthermore, we want to obtain a method for
computing C¥.

We note that an inverted unit dual quaternion ¢~ can be
reformulated [6] as Da (with D = diag(1,—-1,-1,-1)),
i.e., in the considered scenario inversion corresponds to
changing the sign of the last three entries. Furthermore, it can
be shown that a HHb can be reformulated as D Q, D b, where
D is defined as before and Q, is the matrix representation
of the dual quaternion a. These insights can be used for
obtaining

1

folai ' B2) =f"(Q; D) ,
where Q7! denotes the matrix representation of the dual
quaternion z; *. Finally, we obtain ff as
fi(z) < f'(Qy Da) - ff (x)
ocexp ((Qz; D) C"(Q:; D))
~exp (z' CY )
=exp(z’ (DQ;/ C"Q;;D+CY)a) .
From this computation, it is now seen that f; belongs to the

desired distribution family. The entire resulting algorithm is
given in Algorithm 4.

Algorithm 4 Update

1: procedure MEASUREMENTUPDATE(C?, C?, 2)
2 Z + MatrixRepresentation(z~1);

3 D «+ diag(1,—1,-1,-1);

4 Ci+DQ./ C'Q;;D+Cl

5 return Cf;

6: end procedure

V. EVALUATION

For the evaluation we assumed a very simple system model
given by
Zyy =z, Buw,

and noisy direct measurements
2y = Xy H Uy -

The entire ground truth was generated using the pro-
posed distribution. For the initial value z,, the cor-
responding parameter matrix was given by Cy =
diag(—10,0,1,1). The system and measurement noise were
modeled using C* = diag(0, —55, —100, —100) and C" =
diag(0, —30, —10, —10) respectively. The deterministic sam-
pling procedure used the approach from [7] (with A = 0.5)
for deterministically approximating the Bingham distribution

and a naive implementation of the UKF for approximation
of Gaussians.

The proposed filter was compared to the UKF. Some
modifications had to be introduced to the UKF in order
to give it a fair chance to compete against the proposed
filter. First, we helped the UKF deal with the fact that the
dual quaternions a and —a represent the same orientation by
introducing an intelligent repositioning of measurements. This
was carried out by multiplying the obtained measurement 2z,
with —1 if —z, is closer to the expected measurement Z2,.
Second, we projected the prediction and estimate of the UKF
back to the manifold in order to obtain a feasible result. In
order to obtain the parameters that were used in the UKF,
random sampling was performed with a subsequent parameter
estimation. This was implemented in a way that considers the
repositioning procedure, i.e., we ensured the random samples
to be on the same side.

We used 100 runs of the filter with 100 time steps in
each run. Within these runs, we recovered the orientation
and translation from each estimate. The mean error (i.e.
deviation from the true system state) was used as an error
measure. All results are visualized in figure 1. It is important
to note that even though the superiority of the proposed
filter seems quite small when it comes to orientation, the
strong nonlinear relationship between position and orientation
that is inherent to the dual quaternion representation has a
considerable impact on the position estimate. That is, the
proposed filter benefits from the sound consideration of the
underlying domain.

VI. DISCUSSION AND OUTLOOK

This work presented a novel dynamic state estimator for the
estimation of planar rigid-body motions. Its main difference
from the state of the art is the use of a probability distri-
bution that is inherently suitable for the representation of
uncertainties on the considered domain. This not only offers
the possibility of a sound representation of dependencies
between position and orientation, but also avoids errors that
arise due to approximation when making use of local linearity.

There are still many interesting questions for further
research. First, it is of interest to gain a better understanding
of the newly proposed distribution, e.g., by deriving further
estimators and results on their optimality. First, for certain
simple system models, parameter estimation based on moment
matching might be used to avoid the need for deterministic
sampling. Second, the newly proposed filter is currently re-
stricted to the planar case. However, many applications require
consideration of rigid-body motions in three-dimensional
space. This presents a challenge in the present approach, as
dual unit quaternions for representation of rigid-body motions
in 3d might require consideration of an additional constraint in
the probability distribution. Finally, it is also of considerable
interest to investigate other directional distributions for this
problem because the choice of the underlying probability
distribution has considerable impact on the capabilities of the
filter to model certain dependency relationships.
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Fig. 1: Mean error after 100 runs in the low noise scenario showing the proposed approach (blue) and the adapted UKF
(green).
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