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Abstract—In this work, a new method for approximating
circular probability distributions by a mixture of weighted
discrete samples is proposed. Particularly, the wrapped normal
distribution, the von Mises distribution, and the Bingham distri-
bution are considered. The approximation approach is based on
formulating a quantizer and a global optimality measure, which
can be optimized directly. Furthermore, a relationship between
the Bingham distribution and the von Mises distribution are
formulated showing that it is sufficient to approximate a von
Mises distribution with suitably chosen parameters in order to
obtain an optimal approximation of the Bingham distribution.
The resulting approximation is of particular interest for filtering
applications, because the involved optimality measure gives rise to
a general error estimate in propagation of uncertainties through
nontrivial functions in the circular domain.

I. INTRODUCTION

A broad range of applications in perception and sensing
requires estimation of quantities that are defined on inherently
nonlinear state-spaces. These quantities involve direction of the
wind, poses of a robot, or direction of arrival measurements in
signal processing. Linear approximation of such state-spaces
may be employed in cases of low noise. This gives raise to
using well-known linear estimation techniques such as the
Kalman filter. However, in cases involving high levels of noise,
neglecting the underlying geometric structure of the manifold
becomes infeasible.

For the circle, which is considered in this work, a number of
different filtering techniques have been proposed that take the
underlying geometry into account. This is achieved by making
use of probability distributions from directional statistics
[1], [2], [3], which is a subfield of statistics that considers
uncertainties defined on these manifolds. For example, circular
equivalents of a Kalman Filter may be based on matching
trigonometric moments and are used for consideration of simple
system models, particularly the identity or a shift.

Whenever system models are more complex, the continuous
distribution representing the current estimate is typically
approximated by a discrete distribution in order to simplify
propagation. For the linear case, there exists an extensive body
of research discussing different types of such approximations.
However, this is not the fact when approximating continuous
densities defined on the circle as state-of-the-art is limited by
only using a given number of discrete values (as in the UKF)
or not providing any provable error bound for the estimation
procedure.
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In linear state-spaces, one of the approaches overcoming
these limitations is based on stochastic quantization. Quanti-
zation has been well known for many years in the context of
signal processing and information compression [4]. Recently,
there has been an emphasis on the quantization of probability
distributions [5]. For the Gaussian case, this has been proposed
in [6], which is based on a quadratic quantization approach.

In this work, we investigate optimal quadratic quantization
of circular probability distributions. The involved optimality
measure gives rise to an error bound for computing expectations
of nonlinear transformations of random variables. The proposed
quantizers are of considerable interest for nonlinear filtering
involving circular quantities because a discrete distribution
with a sufficiently large number of samples can be chosen to
maintain a predefined quality level for the prediction step. This
work considers the wrapped normal, the von Mises, and the
Bingham distributions because of their importance in many
applications involving circular data. However, the proposed
approach is easily adaptable to other circular distributions and
other application scenarios besides stochastic filtering, such as
analysis of time series involving periodic quantities.

In summary, this paper contains the following contributions

o A novel method for approximating probability densities
on the circle with applications to wrapped normal (WN)
and von Mises (VM) distributions.

o Derivation of a simple relationship between the VM and
Bingham distributions for easily adapting the approxima-
tions of the VM distribution to the Bingham case.

o An error bound for scenarios where the resulting sample
set is applied to numerical integration for Lipschitz
continuous transforms of random variables.

o Evaluation comparing the proposed approach to other
state-of-the-art approaches.

The remainder of this paper is structured as follows. The next
section gives an overview of related work. Some preliminaries
on circular distributions and stochastic quantization are given
in Sec. III. The proposed method is presented in Sec. IV and
evaluated in Sec. V. Finally, the work is concluded in Sec. VL

II. RELATED WORK

There are numerous applications involving stochastic filtering
based on directional statistics. In [7], a von Mises distribution
based filter is used for azimutal speaker tracking. This distribu-
tion is also used in [8] for GNSS signal tracking. Active speaker
localization using von Mises and wrapped normal distributions
is discussed in [9], [10]. A multivariate variant of the wrapped
normal distribution is used in context of radar signal processing
in [11]. Furthermore, a discussion of circular estimation using
lattice theory is presented in [12]. Early literature considering
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Figure 1: Density functions of the probability distributions considered in this work. All location parameters were set in a way
ensuring the / one mode to be at 0. The wrapped normal density (red) has dispersion parameter ¢ = 1, for the von Mises
density (green) x = 1 was choosen, and the Z matrix of the Bingham density (blue) was choosen as Z = diag(—10,0).

filtering on nonlinear domains dates back to [13], [14] and is
still an active are of research [15].

Most of the nonlinear filters discussed so far typically
assume simple system models such as the identity or a mere
shift. In order to tackle propagation through more complex
functions sampling schemes reminiscent of the unscented
Kalman filter (UKF) have been proposed in [16], [17]. Similar
to the UKF, these schemes are based on matching moments for
obtaining a discrete approximation of the underlying continuous
distribution. The method presented in [18] considers a situation
where the underlying discrete distribution has more Dirac
components than required in order to satisfy the moment
constraints. Then, a distance measure is used to exploit this
redundancy in order to make the discrete distribution as similar
as possible (with respect to this distance measure) to its original
continuous counterpart.

In contrast to these approaches, the method presented in this
work does not aim at satisfying moment constraints. Instead,
a quantization based method is used in order to provide
a discrete approximation of the continuous density. Unless
precomputation and interpolation are used, this comes at the
cost of a higher computation time compared to the UKF-like
approaches. However, the main advantage over state of the art is
an error bound for propagation of uncertainty through Lipschitz
continuous functions. Therefore, in scenarios where a Lipschitz
constant is known a priori, it is possible to approximate the
result of an expectation computation up to a predefined level
of precision.

III. PRELIMINARIES

This section first revisits some circular probability distri-
butions and their properties. Then, the concept of optimal
quadratic quantization is introduced.

A. Circular Distributions

Circular probability distributions are inherently defined on
the circle S;. Thus, there are several ways to parametrize them
and to derive their respective probability density functions
(p.d.f.). The most widely used circular distributions arise from
modifying non-circular counterparts in order to restrict them to
a circular domain. All distributions considered in this work are

related to the normal distribution in some sense. Their density
functions are shown in Fig. 1.

One of the main reasons for the wide-spread use of the
normal distribution is the central limit theorem. Thus, it is
desirable to obtain a circular distribution which also appears
as a limit distribution for a wide class of circular densities.
An obvious approach is wrapping a normal distributed random
vector © ~ N (1, 0?) around an interval of length 2. This
results in the wrapped normal distribution.

Definition 1. Ler X € [—m,m) be a random variable with
corresponding p.d.f.
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where 0 > 0, p,x € [—m, 7). Then, the distribution of X
is called a wrapped normal distribution and we write X ~
WN(u, o).

It can be easily seen that this distribution naturally arises
as a limit distribution for a circular summation scheme of
other wrapped distributions (which originally converged to
the normal distribution). Furthermore, the underlying density
function appears as a solution of the heat equation giving further
justification for considering this distribution [19]. Similar to
the normal distribution, it can be shown that the sum of
two wrapped normal distributed random variables is itself
a wrapped normal distributed random variable (after a modulo
27 operation).

Unfortunately, the wrapped normal distribution is lacking
one of the important properties of the normal distribution. The
product of two wrapped normal densities is not itself a rescaled
wrapped normal density. This is particularly a problem for a
typical Bayesian measurement update step in stochastic filtering.
Furthermore, handling of the infinite sum within the density
might be computationally inconvenient in some applications,
particularly for large o.

The von Mises distribution arises when taking a A(u, C)
distributed random vector in R? with ||x|| = 1 and condition-
ing it to the unit circle. The definition of this distribution is
usually formulated as follows.



Definition 2. Ler X € [—m,w) be a random variable with
corresponding p.d.f.

fvm(8) = _ exp(k cos(f — 1))

2’/TI() (Ii)
where k > 0, u,x € [—m, ), and Iy(k) is the modified Bessel
function of order 0. Then, the distribution of X is called a von
Mises distribution and we write X ~ VM(u, k).

The von Mises distribution can be used for a closed form
measurement update step, thus it is of particular interest for
stochastic filtering. The same property is also maintained by
the Bingham distribution [20]. It is an antipodally symmetric
equivalent to the von Mises distribution and it is constructed
in a similar way. Instead of requiring ||u|| = 1, we require
= 0. Thus, the resulting density has 180° symmetry.

Definition 3. Ler X € [—m,w) be a random variable with
corresponding p.d.f.

fBingham (0) = exp(v(0) T MZMT v(h))

1
N(Z)
where v(0) = (cos(0),sin(6))", M € R%*2 is orthogonal,
and Z. € R**? is diagonal. Then, the distribution of X is
called a two-dimensional Bingham distribution and we write
X ~ Bingham(Z).

The particular interest in the Bingham distribution stems from
its universal applicability not only to the circular case but also to
representing uncertain orientations using its four-dimensional
variant. Besides the filtering applications mentioned in the
introduction, the Bingham distribution was also applied in the
analysis of textures [21] and shapes.

B. Optimal Quadratic Quantization

The basic idea of quantization in digital signal processing is
to reduce the number of values (which is typically uncountable)
of some signal to a countable set. Optimal quantization of a
continuous probability distribution defined on a space 2 C R”
addresses the same problem. The basic goal considered in this
work is the reduction of the number of values describing a prob-
ability distribution to some finite set and thus approximation of
a continuous probability distribution by a discrete distribution.
Quantization of probability distributions is discussed in greater
depth in [5].

Voronoi quantizers can be used for the considered approxi-
mation problem. Such a quantization can be thought of as a
vector z € QN consisting of means of Voronoi cells (in the
scenario considered in this paper, it will always be assumed
that this vector is sorted, i.e., ; < x;41). The Voronoi cells
defined by this vector are given by

Ci={zeQ: dlz,z;) <d(z,xj), Vj #i} ,

where d(-,-) is a suitable choice for the underlying distance.
Thus, the following notation defining a quantizer is meaningful.

Ve(X) =z, forz e C; . (D

For the purpose of this work, the boundary between two
neighbouring sets C; and C'; may be arbitrarily added to either
Ci or Cj.

There are many ways to define a quantization error describing
the quality of a given quantizer. Thus, a general definition is
given here.

Definition 4. For an N-component Voronoi quantizer Vy (i.e.,
z € Q) of a probability distribution P, the N-th quantization
error for P of order p is defined by E (| |X — Va(X) | |p), where
X is a P-distributed random variable.

In the case where ||| is the Euclidean norm and p = 2, the
resulting error measure is also known as (quadratic) distortion
and denoted by D,. Using (1), this error measure can be
formulated as

by _ . L
E(IX = vaIP) = [ min lles ~ XIP aP

Finally, the problem of optimal quantization for P of order p
can be formulated as finding

z* =argminE (|| X — Vo(X)|[") .
zeQN

A quantizer V,, can be used to define a discrete probability
distribution where each component x; is assigned probability
weight

This can be applied to deriving error bounds for approximate
numerical integration of some function g : Q@ — Q/, e.g,
by using an optimal quantizer with respect to the quadratic
distortion error measure. The resulting approximate integral is
given by

E(9(X)) =E(g(Va(X))
N N
ZZ/ g(x;) dP = Zwig(xi) :
i=17Ci i=1

In this scenario, the following error bound [6], [22] can be
obtained for a Lipschitz continuous function g with Lipschitz
constant L,

3)

where D, denotes the quadratic distortion of the quantizer V.

IV. QUANTIZATION OF CIRCULAR DENSITIES

A circular equivalent to the quadratic distortion will be used
as the considered error measure. It is defined by

Dy = E(d(Xv VQ(X))2) ) “4)
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Figure 2: The first plot shows the the distortion for a 2-quantizer
of a WN(0, 1) distribution (where x; < x5 is required). The
second plot shows the distortion in a similar scenario for the
VM(0, ) distribution, where the means of the Voronoi cells
are symmetrically located at —x and z.

where d(-, ) is the circular equivalent of an Euclidean distance
taking the periodicity of the circle into account. That is, d(-, -)
is given by

d(x,y) = mln{"]j - y|a 27 — |Jj - y|}

for every z,y € [a,a + 27) and an arbitrary domain . This
choice makes (3) adaptable to the circular case. An important
application of this is the derivation of an upper bound for the
error in an approximate propagation on the circular domain. It
can be observed that the distortion of optimal quantizers with a
fixed number of components is maximized when the considered
densities approach/become the uniform distribution on the circle
(this happens for o — oo, k = 0, and Z = diag(c, ¢) with
arbitrary ¢ € R). Thus, an optimal /N-component quantizer
of the uniform distribution yields an upper limit for the
approximation error made by approximating the true continuous
density by a discrete density obtained from quantization.

Using the 2m-periodicity of circular densities allows rewriting
the error measure (4) as

N
D, = — )’ d
, E_j/cwc ) f(x) do
N Tit1/2
=S [ s
i=1"Y%i-1/2

where x; are assumed to be in an increasing order, o =
TN — 27, N1 = 2o + 2™ and 2440 = (25 + Ti41) /2.
Optimization procedures for computing an optimal quantizer
can be usually speed up by providing the gradient. Thus, a
general result is derived on the gradient of the distortion for
continuous circular densities.
Some further notation will be needed for the formulation of

the following results and their respective proofs. For a p.d.f.

f(), let FM) denote the antiderivative of y2- f(y), let F'®)(y)
denote the antiderivative of - f(y), and let F®)(y) denote
the antiderivative of the density f(y) itself.

Proposition 1. Consider a circular random variable X €
[—7, ) following a continuous distribution given by the density

f. Then, the gradient of the error measure (4) with respect to
x is given by
0D,
83%

Tit1/2

— 9 [F(z)(y)]mi T [F(S)(y)}

Tit1/2

Ti—1/2

A proof is given in Appendix A. In the following, a brief
look will be taken at the considered circular distributions and
some theoretical aspects of computing the distortion for a
quantizer of this distributions.

A. Wrapped Normal Case

The antiderivative of a wrapped normal density can not be
computed in closed form. However, due to its relationship to
the Gaussian distribution it can be represented as an infinite
sum involving the erf function.

Proposition 2. The distortion of a quantization V, of the
wrapped normal distribution WN(0, o) is given by

Z Z Py —2P%) + P

1=1 k=—o00

The components P(k are given by

i+1/2

Py —l 2(2km — y) fuly)
y+ 2kmw !
V20 )] 7

<2k27r2 + ) rf (
Ti—1/2

Y+ Qkﬂ')] Fit1/2
: —x; +k-m-erf | =— ,
ik |: fk( ) ( \/§O' _—

P = [x%‘erf (y + 2k7r>} e
2 \/EO' Ti—1/2
A proof is given in Appendix B. The resulting error measure
for the case of NV = 2 Voronoi cells is shown in the left plot
Fig. 2. The triangular structure of the plot is due to the fact,

that we assume the locations of the components to be given in
an increasing order, i.e., o > 7.

)
N
[\
S
I

B. Von Mises Case

A simplification occurs for the quantization of the von Mises
distribution, because there is no infinite series involved in the
actual density function. However, the antiderivative of the von
Mises density needs to be computed numerically. It is given

by
®) () — L 2 NSl — )
Fon(r) = o (a; pA ;[l(li)f

This series representation unfortunately involves the evaluation

of a Bessel function in each summand. Furthermore, no
similar representations for F\(,ll\zl and F\(,QI\ZI are known so far.
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Figure 3: Optimal quantization of the WN(0, 1), VM(0, 1), and Bingham(A, Z) distributions, where A is the same as in (6)
and Z = diag(—10, 0). The quantizer is represented by the induced discrete probability density, where the height of the discrete
components is proportional to their respective probability weights.

Algorithm 1: Optimal quantization of a Bingham distribu-
tion
Input: Number of Voronoi cells N; Bingham distribution
parameters M = (m; ;), Z = diag(z1, z2) with
29 > 21.

Output: Optimal 2N quantizer x

/* Extract mode of Bingham */
< atan2(mso 2, m1 2)

/* von Mises parameter x/
K4+ (20— 21)/2

/* Optimal quantization of VM(0,k) x/
y < OptimalVonMisesQuantizer (0, s, V')

/* Obtain optimal Bingham quantizer */
Y1 YN N YN
g%(57,775+ﬂ',,7+ﬂ')

z < ((x1 +p) mod 27, ... (xan + ) mod 27)

Consequently, using direct numerical integration is necessary
to compute the distortion for a quantizer of the von Mises
distribution. The same problem arises in the computation of
its gradient using Proposition 1. However, a speed up can
be achieved by leaving away the normalization constant (or
precomputing it at the very beginning of the entire optimization
procedure). This avoids numerous evaluations of the Bessel
function. The utility function for approximating von Mises
distribution using a quantizer with N = 2 and symmetric
placement of the components x; = —x2 is shown in the right
plot of Fig. 2.

C. Bingham Case

Instead of deriving a quantizer particularly suited for the
Bingham distribution, a relationship with the von Mises
distribution can be used to obtain an optimal quantizer from
an optimal quantizer of the von Mises distribution.

Proposition 3. Let X be a Bingham(M,Z) distributed
random variable, where M = (m; ;) Z = diag(z1, z2) with
29 > z1. Then, 2X mod 2w is a VM(0, k) distributed random

variable with 60 =
k= (22— 21)/2.

This avoids the need for running an optimization method in
a scenario involving multimodal densities, because an optimal
2N-component quantizer of a Bingham distribution can be
derived from an N-component quantizer of a von Mises
distribution. The whole process is described in Algorithm 1.

(2 - atan2(mg,2,m12)) mod 2w, and

V. EVALUATION

Several problems need to be addressed when implementing
a method to compute optimal quantizers. The starting value
of the optimizer is of particular importance in finding the
optimal quantizer because of the following three reasons. First,
a bad starting value can result in the optimizer not finding
the optimum, because components located sufficiently far
away from the mean of a very peaked distribution might not
change their position during the optimization process. This is
a consequence of floating-point round-off errors making the
computed derivative of the distortion (with respect to these
components) become 0. Second, our utility measure assumes
z; < z;41 and thus, choosing the same value as starting point
for all x; might break this ordering, which would need to be
fixed by introducing additional sort operations. Finally, a good
heuristic for the starting value might significantly reduce the
number of required iterations. However, in these evaluations, a
very rough heuristic was used. For approximating the zero mean
wrapped normal distribution the start values for the optimizer
were chosen as

m(2i —1—N)
T; = N
and for the zero mean von Mises distribution the start values

were chosen as
. 1 .
-min (| —,1) , i=1,...
VE

m(20 —1—N)

Ty = —" ">

N

with min (k71/2,1) = 1 for k = 0. Approximations of
distributions with a non-zero mean can be made by using
a suitable shift.

Formulas from Proposition 2 were used for approximation
of the distortion in the wrapped normal case. Numerical

-min(o,1), i=1,...,N,

’N7
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Figure 4: Norm error between the first circular moment of the
discrete probability densities derived from optimal quantization
(with N components) of wrapped normal (red) and von Mises
(green) distributions and their true first circular moments.

integration was used for computing the distortion and its
derivative in the von Mises case. The resulting optimal
quantizers for some circular densities are shown in Fig. 3,
where the quantizers are represented by the induced discrete
probability distribution approximating the original continuous
density.

The first circular moment was used to evaluate the approx-
imation quality of the proposed quantizers. It is given by
E(exp(iX)) and of particular importance for moment matching
based parameter estimation of the involved distributions. The
true first circular moment was compared with the first circular
moment of the discrete distributions obtained from optimal
quantization with respective probability weights as defined in
(2). The results are shown in Fig. 4.

o=0.1 o=1
N Dy iter  time Dy iter  time
5 [80-100% 5 025 [ 77-1002 5 02
10 | 23-100% 8 055 | 21-1072 8  0.7s
15 ] 1.1-107¢ 8 1.1s | 9.8-1073 7 1.2s
30 | 28-107° 8 435 | 25-1073 8  5.3s

Table I: Simulation results for optimal quantization of wrapped
normal distributions.

An overview of the optimization procedure for the wrapped
normal case is given in Table I. These evaluations were
computed using a straight forward implementation of the error
measure (and its derivatives) in Matlab 2013b and a trust-region
optimization procedure (which is the default for fminunc).
All simulations were performed on a system with an Intel Core
17-4770 CPU. In the wrapped normal case, the computation
time rises not only for a rising number of components but also
for a rising o. This is because the number of relevant terms in
the infinite sum within the wrapped normal densities (and thus
within the corresponding antiderivatives) is dependent on the
parameter o. The overall picture looks similar for the von Mises
case (see Table II). Contrary to the wrapped normal distribution,
the computation time rises for a very peaked density. This is
due to the use of an adaptive integration method.

The presented quantization can be used directly in a scenario
without real-time requirements, e.g., for analysis of certain
types of periodical time-series. Furthermore, a better implemen-
tation (e.g., by generating compiled binary code and considering

k=1 k=10
N Dy iter  time Dy iter  time
5 1.1-100T 4 01s [ 88-107% 7 0.2
10 | 28-1002 5  0.5s | 25-1072 6 0.6s
15131002 6 1.3s | 12-107% 7  1.5s
30| 31-100% 6  5.0s | 3.2-100% 6  5.0s

Table II: Simulation results for optimal quantization of von
Mises distributions.

symmetry) makes the proposed approach suitable for many
real-time applications. Several strategies can be used to achieve
a further speed up, where numerical optimization is avoided
entirely. First, sub optimal quantizers can be used which are
obtained by computationally efficient heuristics. In this case,
the distortions of such quantizers need to be precomputed in
advance in order to make a design choice about the proper
number of components involved. Furthermore, computation
of probability weights of the induced discrete probability
distribution also involves numerical evaluations making a
good heuristic choice necessary. Second, a combination of
interpolation and precomputed look-up tables may be used
in order to approximate an optimal quantization. In this case,
error bounds for the involved interpolation method can be used
to derive a bound on the suboptimality of the interpolated
quantizers.

VI. CONCLUSION

In this work, Voronoi quantization of circular densities is
proposed. These Voronoi quantizers give rise to an induced
discrete probability distribution approximating the original
continuous distribution. The proposed method can be used
to guarantee a predefined degree of precision in computing
transformations of circular random variables. This is of
particular interest in the stochastic filtering. For future work,
it is of interest to derive quantization based approximations of
continuous probability densities on other manifolds, such as
the manifold of orientations SO(3) and the manifold of rigid-
body motions SE(3), because of their importance in many
applications. Furthermore, use of different circular distributions
and error measures might result in deriving more efficient
approximation techniques.

APPENDIX

A. Proof of Proposition 1
The gradient can be decomposed into.
oD,
83:;

Furthermore, let &; := x;, Ti+1/2 := Tij41/2 for 2 <i < N,
To =z, and Tn41 = x1 (similarly Zrn4q/9 := 2112 and
Ti_1/2 = Tn41/2)- A first useful observation is that = and
have been chosen in a way such that

(@) = f(xi)

holds. In the next step, the ng) are derived.
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Use of z instead of x in the first and last summand is to make
sure that for ¢ = 1 or ¢ = L periodicity is taken into account
correctly. Leaving away unnecessary terms yields

) -
G ZTF(U(%—Uz)

Ty

+ Jii (F(l)($i+1/2) - F(l)(zi—lﬂ))
_ 6(; F(l)(ii+1/2) .

ofin o
n Wf(%ﬂ/?) :

Similar reasoning can be used for computation of Gl@). This
yields

9y Ti—1Ty_1/2 — Xy Ti—1/2
GE ) — / 2 2. f(xifl/Q)
Tit1/2

+ [FOw)]

Ti-Tig1/2 — Zig1 - 9~Ci+1/2
) : f($i+1/2)

Ti—-1/2

And for GES), we obtain

j?_ — 3712 Tit+1/2
ngs) :% f(@imay2) + 2 [F(S) (y)}
Ti—1/2
xf — :i’f
% f@igay2) -
Putting all of this together yields the desired result
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B. Proof of Proposition 2
The expectation E [(X — ¢(X))?] can be decomposed into

L 00
E[(X —q(X)?] =" > By —2P3 +F

1=1 k=—o0

Now, each component is computed separately. In each case,
the computations come down to using the relationship to the

Gaussian distribution.

+ 2km)?
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C. Proof of Proposition 3

Due to the fact that zo > 2z;, we observe that one of
the modes of the Bingham distribution is located at p with
(cos(u),sin(u)) = (mq,2, ma,2). Furthermore, we note that M
is orthogonal. Consequently, the density can be rewritten as

fBingham(x; M, Z) = fBingham(w — K Aa Z) )

0 1
A—<1 0). ©)

with



The combination of z; < zo and this particular choice of A
ensure fBingham (¢ — 115 A, Z) to take its maximum values at
xz = p and x = p — 7. The mean p is obtained by

o= atan2(m272, m172) .

Now, it is clearly sufficient to consider a Bingham(A,Z)
distributed random variable X in the following.

In order to rewrite the density of Bingham (A, Z), we note
that Bingham (A, Z+ c¢-I) for arbitrary ¢ € R (see [23]). Thus
diag(z1, z2) and diag(0, zo — z1) describe the same distribution
and it can be assumed that the first entry of Z is zero. Then,
the p.d.f. of the Bingham distribution can be rewritten as

F(a) o exp ((z2 — 21) cos(w)?)
Making use of

2 1
cos(z)? = 7008( ;) +

yields the density representation

f(z) cexp <(22 _ Zl)cos(22x)+1>

X exp (22_221 cos(2x))

The density f of 2X can be obtained by applying the
transformation theorem for probability densities. This procedure
yields

Fa) cesp (252 costo)

Because of its 27 periodicity, f is also proportional to the den-
sity of 2X mod 2x. Thus, 2(X + x) mod 27 ~ VM(0, k)
with = (2 mod 27) and kK = (22 — 21)/2. O
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