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Abstract— In this paper we present a new estimation algo-
rithm that allows for the combination of information from any
number of process and measurement models. This adds more
flexibility to the design of the estimator and in our case avoids
the need for state augmentation. We achieve this by adapting
the maximum likelihood formulation of the Kalman Filter,
and thereby represent all measurement models as residuals.
Posing the problem in this form allows for the straightforward
integration of any number of (nonlinear) constraints between
two subsequent states. To solve the optimization we present a
closed form recursive set of equations that directly marginalizes
out information that is not required, this leads to an efficient
and generic implementation. The new algorithm is applied
to parameter estimation on MAVs which have two dynamic
models, the MAV dynamic model and the IMU-driven model.
We show the benefits and limitations of the new filtering
approach on a simplified simulation example and on a real
MAV system.

I. INTRODUCTION

In order to perform the challenging tasks demanded by
modern robotic systems, precise estimation of the state and
a large number of parameters is required. To allow the
estimation of the current state and parameters these systems
are equipped with a large array of sensors. However, to make
efficient use of all the information provided by these sensors
sophisticated sensor fusion algorithms are required.

Modern schemes that perform this parameter estimation
tend to utilize a batch optimization process. This provides an
accurate maximum likelihood solution for the parameters and
allows for the formulation of any residual between multiple
states. However, batch optimization can take substantial
time to process and generally assumes that the parameter
values are constant for the entire dataset. In many situations,
the batch processing of data limits the applicability of the
approach and an iterative scheme that can provide real-time
estimation of dynamic parameters is preferable.

As an example, consider the rapidly growing field of micro
aerial vehicles (MAVs). These systems require the estimation
of a large number of system parameters including the current
pose of the system. This estimation is further complicated for
activities such as the transportation of goods, where many of
the parameters (mass, mass distribution, inertia, etc) cannot
be assumed to be constant values. These systems may also
physically interact with the world, in which case the external
forces acting on the system must also be estimated in real-
time.
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Fig. 1. Image of the MAV used in our parameter estimation experiments.

The influence these parameters have on the system can be
observed through the MAV’s IMU, dynamic model and any
odometry sensors present. Issues arise with this estimation
however, as in this situation the MAV possesses two process
models (in contrast to an update model, a process model
involves two subsequent states). One driven by the IMU and
a second based on the dynamic model of the MAV. Situations
such as this where multiple models and information sources
are present, pose a significant challenge for traditional filters.
These difficulties are further complicated when measurement
noise and process noise are correlated.

In this case, one could add the IMU to the update step
of the filter. However, this would mean augmenting the state
vector with the acceleration, which can be challenging to
derive an appropriate propagation model for and increases the
state vector. In this paper we present a generalized filtering
algorithm (GIF), that can overcome this problem and take all
the available information into account. It does this without
increasing the state vector more than is necessary and without
making additional assumptions, such as constant acceleration
for the augmented state.

The contributions of this work are:

• We present a generic and flexible filtering algorithm
which can handle an arbitrary number of process and
measurement models in a computationally efficient way.

• The new algorithm is validated on a simplified simula-
tion example and on experimental data recorded from
multiple flights with our MAV.

The remainder of this paper is organized as follows:
in Section III, we derive the new filter and show how to
apply it to the problem of parameter estimation in Section
IV. Finally, we show experimental results in Section V, both
on a simplified 1D simulation and on real flight data.
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II. RELATED WORK

While the original Kalman Filter (KF) [1] and EKF [2]
were formulated with one process model in mind, the formu-
lation has been extended to allow the use of multiple models
in several different contexts. Interacting Multiple Model
(IMM) based filters [3] consider the use of several system
models. In this formulation only one model is considered
valid at a given timestep. This is in contrast to our approach
which can consider multiple models simultaneously.

A similar problem has been considered in the research
area of Track-to-Track Fusion (T2TF) [4], [5], [6], which
aims at combining locally computed estimates from different
sensors. When heterogeneous sensors are involved, this may
require different state representations and therefore also
differing system models within the individual sensors. This
was considered in [7]. One of the main focuses within
the T2TF literature, however, is the handling of correlated
process noise in decentralized filters. This problem does not
arise in our scenario as we are considering a centralized
setting.

Simultaneous consideration of multiple process models
can be reformulated as one implicit process model. In [8],
an implicit model is considered in the prediction step. On
the other hand, use of implicit update model equations is
discussed in [9]. In this paper we derive a more general
formulation unifying both aspects in an information form
filter.

Early work on real time parameter estimation on MAVs
was done in the frequency domain [10]. By only considering
the frequency band of interest it is computationally very
efficient and automatically rejects noise in other parts of the
frequency spectrum. However frequency based approaches
rely on good linear approximations.

Other ego-motion estimation coupled approaches are often
based on Kalman filters, where the parameters are added to
the filter state. The work presented in [11] offers a com-
parison of common methods for doing this estimation, and
compares EKF, simplified unscented Kalman filter (UKF),
and full UKF for estimating various non-linear aerodynamic
effects on both fixed-wing and coaxial helicopter platforms.
In contrast to our work, they do not take the raw IMU
measurements into account.

Another big field for on-line parameter estimation is
adaptive control, where the parameter estimation is closely
tied to the control. Estimating the inertia as an example was
first developed for general rigid bodies [12] and applied to
MAVs in [13]. Other work is based on recursive least squares
as shown in [14] where the unknown mass was estimated.

In this paper we extend our previous work [15], where
we estimate the dominant parameters of the MAV in a
batch maximum likelihood (ML) estimator. We combined
measurements from the IMU, the MAV dynamic model
driven by the motor speeds, and external tracking system
to take all available information into account. With our new
algorithm we are able to include all this measurements in
a filter-based approach and estimate the parameters in real
time.

III. GENERALIZED INFORMATION FILTERING

In many robotic applications there is a trend towards an
increasing number of sensors and models that need to be
combined into a single concise state estimation process.
A classical approach is to employ an EKF. However, this
imposes many restrictions on the set of models that can be
used. Various extensions exist to handle special cases such
as correlated noise between prediction and update phase.

Therefore, when it comes to complex systems, it is often
simpler to represent the maximum likelihood estimation
problem with the aid of factor graphs or error terms and
solve it in an incremental or batch fashion. In this section we
derive a general filtering algorithm, from now on referred to
as generalized information filter (GIF), which can be applied
to a wider set of sensor fusion problems than the regular
EKF. The derivation is based on the maximum likelihood
estimation that can be associated with every KF [16]. Our
generalized set of filtering equations result from a slightly
adapted maximum likelihood problem.

A. Optimization Based Filtering

For better understandability most equations are derived by
considering the linear case. The extension to non-linear cases
is analogous to the relation between regular KF and EKF [2].
The negative log-likelihood form of the MLE optimization
problem that leads to the regular KF equations can be written
as:

L(xkk,x
k
k−1) = ‖xkk−1 − xk−1

k−1‖
2
P−1

k−1

(1)

+ ‖xkk − Fxkk−1 −Guk−1‖2Q−1 (2)

+ ‖zk −Hxkk − vk‖2R−1 . (3)

In the above equation we employ the notation where xmk
represents the estimated state at timestep k when including
all information up to time step m. E.g., xkk−1 represents the
estimated state at time k−1 when integrating all information
up to time step k. The matrices, F ,G,Q,H,R describe the
stochastic system, and the vectors u and z are the process
input and the update measurement, respectively.

We propose the use of a fully implicit formulation of
the estimation problem and rely on the concept of residuals
rather than on the paradigm of process and measurement
models. Compared to the above optimization problem, we
merge the prediction (2) and update (3) into a single stacked
linear residual

rk = Axkk +Bxkk−1 + bk. (4)

Together with the prior (1), this yields the following negative
log-likelihood cost function:

L(xkk,x
k
k−1) = ‖xkk−1 − xk−1

k−1‖
2
P−1

k−1

(5)

+ ‖Axkk +Bxkk−1 + bk‖2W−1 . (6)

One can also verify that the original problem can be retrieved
as special case of this form, where the matrices are selected
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as:

A =

[
I
−H

]
,B =

[
−F
0

]
, bk =

[
−Guk−1

zk − vk

]
,

W =

[
Q 0
0 R

]
While we can do regular KF with the presented form,

much more general system models can be integrated in this
manner. For instance correlated noise between prediction
and update step can easily be considered by adapting the
off-diagonal terms of the joint covariance matrix W . Also,
multiple or even missing prediction models can be inherently
handled by adding or removing residuals. In certain cases this
can strongly simplify the design and implementation of KFs.

B. Recursive Algorithm

Analogously to the regular Kalman filter, a set of recursive
equations can be derived. Among different possible forms,
we chose an information matrix based formulation which
tracks the information matrix Yk = P−1

k instead of the
covariance matrix itself. In contrast to most work on informa-
tion filtering we recover the state at every time step, since we
need it for the linearization point. This enables us to derive
a compact and efficient algorithm.

Given a prior distribution on the previous state
(xk−1
k−1,Yk−1), the recursive equations provide an estimate

for the current state (xkk,Yk) while integrating all measure-
ments/information up to time step k:

Dk = Yk−1 +BTW−1B (7)
Sk = ATW−1(I −BD−1

k BTW−1) (8)
Y k
k = SkA (9)

Ykx
k
k = −Sk

(
Bxk−1

k−1 + bk
)
. (10)

The last equation represents the solving of a linear system
and the full setup requires only one matrix inversion (as-
suming that W−1 can be pre-computed). Independent of
the number of update measurements, the inversion always
involves a n × n matrix, where n is the dimension of the
filter state. The derivation of the above filter equations can
be obtained by setting the differentials of the log-likelihood
w.r.t. both states, xk−1

k−1 and xkk, to zero and employing
linear algebra (we omit the full derivation here due to space
restrictions).

C. Extension to Nonlinear Systems

In the case of nonlinear systems the selection of lineariza-
tion points, x̄kk and x̄kk−1, is required around which Jacobians
are evaluated. These Jacobians are then used to construct the
filtering matrices A, B, W and the vector bk. The nonlinear
residual rk = f(xkk,x

k
k−1), which directly integrates all

measurements, is approximated by:

rk ≈ Ak∆xkk +Bk∆xkk−1 + bk, (11)

with ∆xkk−1 = xkk−1 − x̄kk−1, ∆xkk = xkk − x̄kk and

Ak =
∂f

∂xkk
(x̄kk−1, x̄

k
k) (12)

Bk =
∂f

∂xkk−1

(x̄kk−1, x̄
k
k)

bk = f(x̄kk−1, x̄
k
k).

While x̄kk−1 can be chosen to be equal to the prior on the
previous state xk−1

k−1, the choice for x̄kk is non-trivial. Often,
however, some good guess is available through some motion
model.

The main advantage of this formulation is that arbitrary
measurements can be included into the filter as long as
they can be represented as function of two subsequent
filter states. On-the-fly enabling and disabling of certain
measurements quantities can be achieved by just removing
the corresponding sections of the filtering matrices. Also,
similarly to the iterated EKF [16], an iterative scheme can be
applied to achieve higher accuracy at the cost of an increased
computational effort.

IV. MODEL DESCRIPTION

We validate our new formulation on two different mod-
els. First, we demonstrate in detail how the new recursive
formulation of the filter may be applied, through the use of
a simple example involving a 1D MAV model. Second, we
present the full MAV model of the hexacopter used in our
experiments.

A. Simple 1D MAV Modelling

By only considering the z direction of an MAV we can
derive a very simplistic 1D MAV model which is shown in
Fig. 2. We want to estimate the position, velocity and the
unknown thrust coefficient cT that maps the input u of the
motors to the produced force.

This leads to the following discrete time equations:

pk = pk−1 + vk−1∆t+ wp,k−1 (13)

vk = vk−1 +
∆t

m
cT,k−1 (uk−1 + wu,k−1)− g∆t

cT,k = cT,k−1 + wc,k−1

where g is the gravity acceleration and w∗,k ∼ N (0, Q∗)
Gaussian noise. For the example, we assume the availability
of a position measurement

p̃k = pk + wp̃,k, wp̃,k ∼ N (0, Qp̃) (14)

and the accelerometer measurement

ãk = ak + g + wã,k, wã,k ∼ N (0, Qã) (15)

where ak is the acceleration of the center of gravity (CoG) of
the MAV at time k. The accelerometer measurement can be
considered an alternative prediction model for the velocity
of the MAV which is common in many applications:

vk = vk−1 + (ãk−1 − wã,k−1 − g) ∆t (16)

to which we refer as the IMU model.
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Fig. 2. A schematically depicted 1D MAV that can only move in z
direction. We measure the position with a height sensor. Furthermore we
know the force generated by the motors and we have an IMU that measures
acceleration in z.

We use these simple equations to demonstrate the mod-
eling and the estimation performance of our new filter
approach. For comparison, we implemented an EKF using
the dynamic model (13) and the position measurement, and a
state-augmented EKF formulation (A-EKF). For the A-EKF,
a full kinematic model similar to (16) is augmented with the
MAV’s acceleration and a constant acceleration model:

ak = ak−1 + wa,k−1, wa,k−1 ∼ N (0, Qa) (17)

The state augmentation allows the formulation of an inno-
vation residual that exploits both, the IMU and the dynamic
model:

zk − h(xk, uk) =

p̃kãk
0

−
 pk

g + ak
ak −

(
1
mcT,k uk − g

)
 . (18)

Our filter formulation circumvents the state augmenta-
tion by directly formulating the predictions and measure-
ments equations as residuals of the negative log-likelihood
function. If we choose the linearization points x̄kk−1 =[
pk−1
k−1 vk−1

k−1 ck−1
T,k−1

]
and x̄kk as, e.g., the prediction from

(13), we find the following Ak, Bk, bk, Wk matrices:

Ak =


1 0 0
0 1 0
0 0 1
0 1 0
−1 0 0

 ,Bk =


−1 −∆t 0
0 −1 −∆t

m uk−1

0 0 −1
0 −1 0
0 0 0

 ,

bk =


p̄ kk −

(
p̄ kk−1 + v̄ kk−1∆t

)
v̄ kk −

(
v̄ kk−1 + ∆t

m c̄ kT,k−1uk−1 − g∆t
)

c̄ kT,k − c̄ kT,k−1

v̄ kk −
(
v̄ kk−1 + (ãk−1 − g) ∆t

)
p̃k − p̄ kk

 ,
Wk = diag

[
Qr (∆t

m cT,k−1)2Qu QcT ∆t2Qã Qp̃
]

where the top three rows include the dynamic model residual,
the fourth row includes the IMU model residual, and the last
row includes the noisy height measurement.

B. Full MAV Model

For MAV multirotor helicopters equipped with an on-
board IMU, two process models are available. One is the
MAV dynamical model, driven by the motor speeds and the
forces and moments they induce. In addition to this, the IMU

provides an additional source of information, which can be
used to estimate their motion.

In a classical filtering approach we would need to augment
the state vector with the acceleration to incorporate the two
motion models in the update phase of the filter and make
some assumption about the evolution of the acceleration.
This is not needed with our new algorithm.

We make the following two assumptions to simplify the
dynamic equations. The CoG of the MAV coincides with the
center of the main body and the motors are all aligned with
the MAVs z-axis.

On our experimental platform the above assumptions
do not hold and we use a more complete model in our
implementation for the final results, which is described in
our previous work [15]. These extensions are not important
for the operation and understanding of the proposed filtering
strategy and are omitted to simplify the equations.

1) Forces and Moments Acting on the MAV: The MAV
dynamic model is driven by the measured motor speeds ñk,
which are modeled as follows:

ñk = nk + wv (19)

where wv denotes a zero mean, discrete-time Gaussian noise
with variance Qv .

The forces acting on the rotor hub of every rotor i are
given by:

BFi =
(
Ti − TicdBv⊥hub,i

)
+ wF (20)

Ti = cT ñ
2
i ; Ti = Tiez. (21)

where we again add normally distributed noise wF to
account for aerodynamic uncertainties. The thrust Ti is given
by the multiplication of the squared rotor speed and the
thrust coefficient cT . We also introduce the combined drag
coefficient cd, to account for the induced drag and blade
flapping [17]. The vector Bv⊥hub,i denotes the projected linear
velocity of the rotor hub i onto the rotor plane and is given
by

Bv
⊥
hub,i =

1 0 0
0 1 0
0 0 0

 (Bv + Bω × BrBAi
), (22)

where BrBAi
denotes the offset of the rotor hub from the

IMU, Bv the velocity of the MAV and Bω the angular rates,
both expressed in body coordinates.

This leads to the total force produced by the motors BFtot:

BFtot =

6∑
i=1

BFi. (23)

The total moment around the CoG is given by:

BMtot =

6∑
i=1

(Mi + BFi × BrBAi
) + wM (24)

Mi = cmñ
2
iez, (25)

with the normally distributed process noise wM to account
for aerodynamic uncertainties. Here we introduced the mo-
ment coefficient cm relating the rotational velocity of the
propeller to the produced moment.
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2) MAV Dynamic Model: We assume that the inertia
matrix J is diagonal and fixed the inertia Jzz to the measured
value, since it has very similar effect on the system as the
moment coefficient cm and is very hard to estimate. For the
MAV model we stack all the parameters into one parameter
vector θ = [cT , cm, cd, Jxx, Jyy], that we append to the state
for the estimation. We also add normally distributed process
noise to all parameters wθ. This leads to the final MAV
model driven by the measured motor speeds ñ.

I ṙIB = CIBBvB (26)

Bv̇B =
1

m
BFtot −CT

IB · Ig − ω × BvB

q̇IB =
1

2
Ω(ω) qIB

ω̇ = J−1 (BMtot − ω × Jω)

θ̇ = wθ

with

Ω(ω) =

[
0 −ωT
ω −[ω]×

]
.

3) IMU Model: We model the IMU measurements with
additive white Gaussian noise and a slowly varying bias
process:

ã = a+ ba + wa (27)
ω̃ = ω + bw + ww,

where ã denotes the accelerometer and ω̃ the gyroscope
measurements corrupted with Gaussian white noise processes
wa and ww of strength σ2

aI and σ2
wI. Random walk pro-

cesses ba and bw with diffusion σbaI and σbwI model the
accelerometer and gyroscope bias processes.

This leads to the following IMU-driven process model:

Bv̇B = ã− ba −wa −CT
IBIg (28)

−(ω̃ − bw −ww)× BvB (29)

q̇IB =
1

2
Ω(ω̃ − bw −ww) qIB (30)

ḃw = wbw (31)
ḃa = wba (32)

4) Position and Attitude Measurements: We use a motion
tracking system1 to obtain position and attitude measure-
ments of the MAV. The measurements are modeled as
follows:

p̃k = IpB,k + wp,k (33)
q̃k = qIB,k ⊗ qq,k, (34)

where wp,k denotes additive discrete Gaussian noise with
covariance Rp, wp,k ∼ N (0,Rp) and where qq,k describes
rotational noise with normally distributed small angles,
qq,k ≈

[
1
2wT

φ,k 1
]T

with wφ,k ∼ N (0,Rq).

1http://www.vicon.com/products/camera-systems/
bonita

5) Filter Design: To formulate an EKF and our new GIF
with both process models we define the state as

x = [IrIB ,BvB , qIB , ω,bw,ba,θ] . (35)

The two previously defined process models equation (26)
and (28) can now be discretized and expressed as a function
of the state xk = fMAV,d(xk−1) and xk = fIMU,d(xk−1).
Similar to the process models we define the discrete position
and attitude measurement function from (33) as h(xk).
From this we are able to formulate the nonlinear residual
functions and calculate the necessary Jacobians for our GIF
as described in (11).

rMAV = xk − fMAV,d(xk−1) (36)
rIMU = xk − fIMU,d(xk−1) (37)
rz = zk − h(xk) (38)

V. RESULTS

We first validate the new formulation on a simple simu-
lation example with exact ground truth. Then, in a second
part we apply the generalized information filtering to the
problem of parameter estimation for our MAV and give some
deeper insight on the advantages and limitations of the new
formulation.

A. Simulation Results on 1D MAV

To analyze the properties of the new formulation in detail,
we show a simple 1D MAV simulation in z-direction. This
allows easier comparisons of different approaches to estimate
the trajectory and parameters. We additionally try to highlight
the advantages and disadvantages of the new formulation.

Fig. 3 depicts the estimation error for the position and
thrust coefficient of the system. Two main observations can
be highlighted. Firstly, the augmented EKF (A-EKF) and
the proposed GIF both exhibit faster convergence for the
parameter estimation (thrust coefficient) than the regular EKF
which neglects the acceleration information. This can be
attributed to the additional use of IMU-data which improves
the estimation of quantities involved in the dynamic model
(velocities/accelerations) and thus provides a stronger feed-
back on the estimation of the thrust coefficient. On the other
hand the estimation of the pose is comparable for all three
estimators.

Secondly, the proposed GIF does not suffer from any in-
consistencies related to inclusion of additional and erroneous
priors. This can be observed for the A-EKF, which due to
its smooth acceleration prior exhibits inconsistencies once a
significant change in acceleration occurs at 5 s (the error falls
out of the estimated σ-bounds). This demonstrates that the
presented GIF can include multiple process models without
relying on additional, potentially erroneous, priors.

B. Experimental Validation

For our experimental validation we recorded short manual
flights and recorded the position of the MAV with a Vicon
tracking system. During this trajectory, all axes of the MAV
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Fig. 3. Estimation errors for position and thrust coefficient for a simple
1D MAV model. Three filter setups are compared: two EKF setups (regular
without IMU, and augmented with acceleration state to include the IMU)
and the proposed GIF framework. The dotted lines depict the estimated σ-
bounds (they mostly lie over each other for the A-EKF and GIF). While
overall the trajectory exhibits smooth accelerations, there is a significant
acceleration step change at 5s. Since the augmented EKF relies on a smooth
acceleration prior it gets strongly affected by the step change. The regular
EKF without IMU-data exhibits a slower convergence rate for the thrust
coefficient.

were excited to maximize the observability of the unknown
parameters.

We compare our new GIF algorithm to a standard param-
eter estimation EKF (neglecting IMU data), as well as to
results from a batch optimization which serves as ground
truth. Since all Jacobians are already derived in our GIF
framework they are directly used in the EKF implementation
with the same noise properties. The external motion tracking
system provides very accurate motion estimates such that
including IMU data does not have a strong influence on
the parameter estimation. Thus, although the EKF does not
include IMU data, it provides a good reference in terms of
parameter estimation and allows to analyze the advantages
and limitations of our approach.

In Fig. 4 the estimated aerodynamic coefficients are
shown together with the 1σ bounds. Ground truth for the
aerodynamic coefficients is estimated in a batch maximum
likelihood optimization described in our previous work [15].
The performance of both estimators is very similar and only
differs in the first few time steps where the GIF converges
faster. This is especially true for the thrust coefficient (cT ),
that in the GIF converges to a value close to the final solution
in only one time step. Also, note that the thrust coefficient is
not truly constant over the entire trajectory depending on the
MAV’s velocity and angle as is described in [18]. Unlike the
other aerodynamic coefficients, the moment coefficient (cm)
exhibits very slow convergence. This is due to the limited
motion around the yaw axis that the MAV undergoes during
its trajectory.

The estimated inertia parameters with standard Vicon
estimates and when the Vicon has had the noise in its attitude
estimates artificially increased to σ = 0.5 ◦ are shown in Fig.
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Fig. 4. Estimated aerodynamic coefficients with an EKF and our new
formulation that also includes IMU measurements. Except for the moment
coefficient, the parameters converge very quickly. Adding the IMU mainly
helps the thrust constant, which converges immediately. The moment
coefficient is the only parameter that exhibits significant uncertainty after
the flight.
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Fig. 5. Estimated Inertia in x and y direction for two different noise levels
in the attitude estimation. The plots on the left show the process run utilizing
the Vicon pose estimates. Due to the high accuracy of the Vicon information
there is no significant difference in estimating the parameters in an EKF or
adding the IMU to the estimation process. The plots on the right show the
process with increased noise in the Vicon system. Adding the information
provided by the IMU in this situation increases the convergence rate.

5. On the left section of the figure, we show the estimated
parameters without additional noise on the Vicon. Since the
noise on the Vicon measurements is small, there is almost
no benefit in using the IMU for the parameter estimation.
However, in cases where the quality of the pose estimate
the Vicon provides decreases the convergence rate of the
EKF also decreases. In these same conditions in the GIF
framework, the IMU information gains more weight. This
leads to GIF giving results that are comparable with the no
additional noise case. This behavior can be of significant
benefit in the context of on-board parameter estimation,
where the pose must be provided by methods such as visual-
inertia odometry. The pose estimates of these methods are
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Fig. 6. Velocity error of the GIF state under gaussian measurement noise
of 1 cm standart deviation on position. To show the benefit of the new
formulation we disable individual sensors. The IMU is disabled for 5 s at
the 15 s mark. After this the MAV model is disabled for 5s starting at the
20 s mark.

likely to be of significantly worse quality than that provided
by a Vicon system.

A useful property of the new formulation is that similar
to the Kalman filter, where individual measurement updates
can be dropped, it is possible to turn off one of the process
models without changing the structure of the filter. This can
be done as all the states and covariances are still tracked
without any additional work on the filter. This property
makes the filter ideal for adding fail safety to a system in
case of sudden sensor drop out. We demonstrate this fail
safety property in a final experiment shown in Fig. 6. In this
experiment we simulate a failure of the IMU by discarding its
measurements for 5 s starting at the 15 s mark. As expected
the behavior of our new filter is almost identical to the EKF
without the IMU during that period, since the parameters
converged for both filters to similar values after this time.
At the 20 s mark we re-enable the IMU and disable the
MAV dynamic model for 5 s. Again, the filter handles this
change in sensor outputs. However, in this case the effects
of dropping the dynamic model are very small compared to
the effect of the dropping the IMU. This leads us to the
conclusion that in this instance, for our system, while the
model can provide robustness against IMU failure, it is not
accurate enough to replace the IMU.

VI. CONCLUSION

In this paper we have presented a generalized information
filter that is capable of handling multiple system and mea-
surement models simultaneously. The presented formulation
is very general and applicable to a broad variety of prob-
lems, where models might even involve correlated noise. In
robotics, for instance, the use of multiple process models may
be desirable to simultaneously consider a dynamical model
and an IMU-driven model in the prediction step.

Our scenario considers this situation for the case of MAVs.
It is shown that, compared to a classical EKF, the entire

recursive estimator can be simplified as it is not necessary
to augment the state with additional linear and angular
acceleration states. In simulation and real-world experiments,
we validate the functionality and flexibility of the proposed
estimator. It is also shown how in the considered scenario,
the proposed approach converges faster in comparison to the
EKF.
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