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Abstract— In the context of future urban automated driving
many important problems remain unsolved. A critical one is the
analysis and prediction of pedestrian movements around urban
roads. Especially the analysis of non-critical situations has not
received much attention in the past. This paper focuses on
analyzing and predicting movements of pedestrians approach-
ing crosswalks, a very crucial pedestrian-vehicle interaction
in urban scenarios. In our previous work, we analyzed the
performance of a data-driven Support Vector Machine-based
architecture, and the relevance of specific features to infer
pedestrian crossing intentions. In this paper, we will use our
previous results as baseline to compare against an architecture
based on neural networks for time-series classification. In
particular we analyze the effectiveness of dense and Long-
Short-Term-Memory networks. Furthermore, we will be look-
ing into enhancing our feature vectors by adding LiDAR based
images to the classification process. Additionally the evaluation
provides an estimate for the temporal prediction horizon. The
approaches presented are validated with real world trajectories
recorded in Germany. Our results show an average accuracy
improvement of 10−20% with respect to our previous Support
Vector Machine-based approach.

I. INTRODUCTION

Predicting the movement of arbitrary objects is a crucial
part of automated driving systems. When considering urban
automated driving especially the long-term prediction of
pedestrian trajectories represents a major challenge. To illus-
trate this, consider the example shown in Figure 1 where a
car and a pedestrian approach a crosswalk. The car is obliged
to stop if the pedestrian intents to cross the street. Timely
inference of pedestrian intentions is extremely difficult, and
designing a system for this requires important considerations
from the vehicle’s perspective. First, we do not want to
execute an emergency braking maneuver or apply any sudden
speed change. These actions would both be uncomfortable
for the occupants of the car and highly dangerous for the
pedestrian and other vehicles in the area. Second, we do
not want to stop when unnecessary, i.e. if the pedestrian
does not intent to cross the road. Late and false predictions
in such situations will lead to a low system acceptance,
apart from deteriorating traffic conditions. Additionally we
also have to consider the pedestrians movement possibilities.
Although the speed of pedestrians is in general much lower
than the one of vehicles, pedestrians are much more agile. A
pedestrian can change directions very quickly, for example
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Fig. 1. Typical urban scenario: a car (blue) and a pedestrian (red) are
approaching a crosswalk (grey box), where the pedestrian has priority. The
inference problem involves realizing whether the pedestrian intents to cross
the road. For the (e.g. automated) car this information is vital to decide
whether it has to stop before the crosswalk or not.

by doing a sharp (e.g. 90◦) turn without reducing the
speed. This high agility is what limits current systems to
achieve reliable pedestrian movement predictions for only
a few hundred milliseconds (e.g. [1]). Motivated by these
fundamental problems, our work aims to develop a system
that (i) minimizes false detections and (ii) provides long-term
predictions to ensure smooth and safe maneuvers.
One of the main findings of our previous work [2] was

the difficulty to build hand-crafted features that generalize
well. Deep learning architectures are able to provide end-to-
end learning, obtaining therefore the features from the data.
This property motivated the idea of utilizing a deep-learning
architecture for the inference of pedestrian intentions. In this
paper we will focus on the prediction of the pedestrians’
intention to cross the street at a given crosswalk. In our
previous work, we utilized a Support Vector Machine (SVM)
based pipeline with very good results for the given problem.
We use this pipeline as a baseline for our comparison of
different neural network architectures. In this paper, we will
first introduce a dense neural network for a fixed number
of time-steps and features to directly classify a pedestrian’s
intent. For this we will use exactly the same input for both
the neural network and the SVM.
In addition to the dense network, a Long-Short-Term-
Memory (LSTM) network is created to allow time-series
inputs of different sizes. Since LSTMs have been created for
learning in time series [3] we expect a higher accuracy. A few
optimal features could be created by capturing video feeds of
the pedestrians, such that future poses and orientation could
be inferred from images. Unfortunately, our current dataset
does not contain that information. Therefore we created 2d
images from LiDAR data. The Velodyne LiDAR provides



a range and an intensity value for every sampled point.
These images allow us to gather information from pose
and change in pose over time and possibly let us infer
information for our problem. For each point, the id of the
recording laser, as well as the rotation angle of the LiDAR
itself, are known. With these known angular coordinates, it
is possible to create 2D images for each spin, for example by
coloring by intensity or range [4]. This way, the remarkable
image processing classification capabilities of convolutional
neural networks may be leveraged. A network is created to
classify predictions solely based on images and another one
in combination with our hand-crafted features.

The evaluation is performed on pedestrian trajectories
recorded in Stuttgart, Germany, and features an evaluation
of the temporal prediction horizon.

The specific contributions of this paper are:
• the formulation of a dense and a LSTM network for

predicting pedestrian intention near crosswalks,
• a comparison between the different networks and base-

line SVM,
• a performance analysis based on LiDAR-based 2D

images,
• evaluation of the temporal prediction horizon.
The remainder of the paper is structured as follows:

The state-of-the-art on predicting trajectories, behaviors and
intentions of pedestrians in urban traffic is reviewed in
Section II. Section III introduces different types of neural
networks for classifying time-series of feature vectors. This
includes the introduction of a convolutional network for im-
age processing. The evaluation in Section IV first introduces
the dataset, the hand-crafted features and gives an overview
on our LiDAR-based 2D images. After that, the different
types of networks are evaluated and compared to the SVM
baseline. The conclusion is presented in Section V.

II. RELATED WORK

In this section, we focus on the related work for both
pedestrian path prediction and intention recognition. Recent
research is primarily concerned with short-time vision-based
pedestrian path predictions. These predictions are typically
used for pedestrian protection systems and are therefore
mostly designed to predict whether a pedestrian is going to
stop at the curb or not (e.g. [1], [5], [6]).
Most of the vision-based algorithms combine both the de-
tection and prediction of pedestrians. For the scope of this
paper we will only analyze the different path prediction
techniques and the features employed. An interesting study,
that identifies which information human drivers use to decide
whether a pedestrian will stop at the curb or not, is presented
in [7]. They have shown that at least one part of the human
body, either the head, the upper-body, or the legs, must be
visible for a human driver to make correct predictions for the
pedestrians’ future movements. Consequently there has been
a large number of work employing human body features. The
most relevant work is reviewed in the next paragraphs.
The contour of the pedestrians’ motion is used in [8] to
infer their intention to cross the street. This contour includes

implicitly the modeling of specific body language traits.
In this case the main contributing features are the body
bending and the spread of the legs. Similar approaches
are presented in [5]. They show methods based both on
the dense optical flow, and a low-dimensional flow-based
histogram. They calculate so called motion features, which
again capture both the leg and upper-body movement. These
features are then linked with the pedestrians’ position to
create a special trajectory representation. These enriched
trajectories are then used for trajectory matching. A larger
variety of body parts, e.g. including arm movements, together
with a sparse geometrical representation, where every body-
part is depicted with a single line, is used in [9]. A common
limitation of all discussed algorithms is the prediction hori-
zon. For the given scenario (usually collision avoidance), the
prediction accuracy is generally very high for a time horizon
of only several hundred milliseconds. This value, however,
is not enough for our application. Additionally the shown
scenarios only review pedestrians who are approaching the
street orthogonally.
One very important feature is missing from the previously
shown approaches: the pedestrians’ head orientation. A so-
phisticated approach is presented in [6]. Here the head
orientation is used to determine the pedestrians situational
awareness, i.e. if the pedestrian is aware of the approaching
car. The paper incorporates this measure into a Dynamic
Bayesian Network (DBN) and shows the benefit which a
head tracking could add to existing prediction algorithms.
They are able to outperform more complex state-of-the-art
algorithms but still have a very limited time horizon.
Apart from these vision-based systems there are other inter-
esting approaches that utilize the pedestrians’ trajectory in
terms of e.g. Cartesian coordinates in a specified coordinate
frame. Again in the context of collision avoidance systems,
[1] models the trajectory of the pedestrian together with the
approaching car to analyze their remaining time to collision
(TTC) with a Bayesian Network (BN). Additionally, con-
cerning pedestrians in an arbitrary given environment, Gaus-
sian process regression has been used to model pedestrian
trajectory patterns [10]. These patterns represent the most
common paths in this specific environment. A long-term
prediction approach is presented in [11]. In a given urban
environment hand-labeled goals for pedestrian movements
are defined and used together with a jump-Markov process
to model their behavior.
This paper aims to provide an approach able to provide
predictions with longer time horizon which enables safer
interaction between pedestrians and vehicles and is a basic
requirement for fully automated driving systems.

III. NEURAL NETWORK ARCHITECTURES

This section presents the different architectures that we
will evaluate. The demonstrated power of generalization of
deep neural network architectures combined with its flexi-
bility in building features are our main motivation to opt for
this type of paradigm. In Section III-A we introduce a simple
dense (feed-forward, fully-connected) network, which we use



Fig. 2. Sample dense neural network with 2 fully connected layers, 2
dropout layers and a decision layer with sigmoid activation.

to create a neural network baseline. It also is the easiest
network for initial tests since we can directly use the existing
data without any changes. A more sophisticated network
structure is presented in Section III-B. Recurrent networks
are designed for learning in time series. Since our database
consists of trajectories this matches our scenario perfectly.
Furthermore we use convolutional networks (Section III-C)
to learn features from our image source (compare Section I),
these features can be used as either sol or additional input
for any of the other networks. All networks are trained
for the same classification task (intention recognition) with
slightly different properties and inputs. Hyper-parameters
were selected by searching within a hand-crafted set of
options and then fine-tuning those.

A. Dense Neural Networks

Dense neural networks represent the straightforward ap-
proach of dealing with the classification of feature vectors.
A dense neural network can be divided into several layers.
In the case of feed-forward networks, each layer has a
predefined number of neurons which are only connected to
neurons in the next layer. All dense networks employed in
this paper are similar to the depiction in Figure 2.

The input data, our feature vector, leads into a fully
connected layer. Rectified linear functions [12] are used as
activation function to attain some non-linearity and training
stability. The activation layer is followed by a dropout layer
[13] for regularization. This combination of fully-connected,
activation and dropout layer is repeated a few times. The final
fully-connected layer only has a single output neuron for
classification which a sigmoid function transforms to values
between -1.0 for not crossing the street with a very high
probability and 1.0 for crossing.

B. Recurrent Neural Networks

Time-series data can often be analyzed more accurately
using recurrent neural networks which allow feeding data
back into previous layers. One widely employed variant
contains Long-Short-Term-Memory (LSTM) units [3]. These
networks store state information in their cells which is
changed based on new inputs and previous outputs. The
output is calculated based on cell state and input values.

LSTM networks are a combination of their cell state and
four gate layers. Each gate represents a fully-connected layer
with a fitting activation function that takes a concatenation
of the current time-steps data and previous output as input.

Fig. 3. A sample convolutional neural network. The Figure shows three
convolutional layers, each followed by a max pooling and a dropout layer.
The last convolutional layer is connected to two fully-connected layers.

Fig. 4. Combination of the networks from Figures 2 and 3. The resulting
network uses both features, the ones learned from image data and the
hand-crafted features presented in our previous work to solve the given
classification problem.

Those gates are then combined by element-wise multiplica-
tion and addition to a complete LSTM layer. The forget gate
can decrease values in the cell, while the input and cell gates
leads to an increase in values. The output is calculated by
the output gate which decides which values are being used
for classification in this case.

C. Convolutional Neural Network

The intent classification may also be possible using
LiDAR-based images which can be analyzed using convolu-
tional neural networks [14]. Image features are extracted by
convolving trained filters along the image and using those
features to classify the respective images. A first approach
is done by only using image features and as a second step,
the input vectors of our previous networks are added to the
input. This feature combination happens at a later stage of
the network by simply concatenating image features with the
pre-calculated vectors. For regularization purposes, dropout
layers are again added to the network. The basic network
structures are outlined in Figures 3 and 4.

IV. EVALUATION

For our evaluation we first provide an overview of our
dataset. Afterwards we present a comparison between our
previous SVM based classification results and the different
neural network architectures from Section III. All neural
networks were implemented in Python using Theano [15]
and Lasagne [16]. Training is performed with AdaDelta [17]
optimized stochastic gradient descent.

A. Dataset

As mentioned in [2], our database contains car and pedes-
trian tracks recorded with a Velodyne laser scanner. The raw
point cloud is processed according to [18]. This includes
the segmentation of the point cloud into arbitrary objects,
the tracking of these objects over time and a classifier that
issues one of four class labels: car, pedestrian, bicyclist or



Fig. 5. Example of a Velodyne point cloud with an underlying sketch of
the street. The two black lines mark the curbs and the grey box symbolizes
the position of the crosswalk. The image contains the following Objects:
cars (blue), pedestrians (red) and background (black). The image also shows
a set of geometrical features which represent the objects movement relative
to the crosswalk and relative to each other. Please note the the term “dt” is
used as an abbreviation for “distance to”.

background. The classifier consists of a nonlinear multiclass
SVM trained and validated on the Stanford Track Collection
(STC). Further details can be found in [18]. Figure 5 shows
a preprocessed point cloud. Every track is associated with
a precise digital map, which describes the static, urban
environment, i.e. road boundaries, crosswalks and more.
Altogether we use around 2000 trajectories with 100000 data
points in this paper.

B. Hand-crafted Features and Automatic Labeling

Our previous work [2] presented a feature design and
through analysis of them, therefore we will only provide a
brief summary here.
Our features can be separated into two main groups. The
first group contains all features that only solely relate to
the pedestrian. These features are: the velocity both in 2d
coordinates and as an absolute value. The distance traveled
in the previous time step and two distance measures, which
describe the pedestrians’ position relative to the road. dtcurb
describes the orthogonal distance to the closest road bound-
ary (usually a curb). The second distance measure is the
minimal distance to crosswalk dtcross. This value will also
be used in this section to provide insight on the prediction
horizon. All geometrical features are shown in Figure 5.
The second feature group contains features based on the
interaction of the pedestrian and a car. These features de-
scribe both the movement and position of the car (e.g. with
a velocity and a distance to the crosswalk) and the “true”
interaction in terms of a relative velocity and a distance
between the pedestrian and the car.
Altogether this sums to 15 single features. These features are
only suited to describe a single frame. To encompass tempo-
ral information we used the features from the last 4 frames
as additional input for our machine learning algorithms. The
total number of features sums up to 75.
In this paper we want to predict the pedestrians’ intention
to cross the street at a given crosswalk. Since our database
contains the whole pedestrian trajectories, and our calcu-
lations are performed offline, we are able to automatically
infer their intentions based on the observed movement. I.e.

(a) Standing (b) Longitudinal Walking

(c) Lateral Walking (1) (d) Lateral Walking (2)

Fig. 6. Velodyne 2D image samples. The images show the Velodyne raw
range measures color coded with a gray map (lighter colors correspond to
smaller range measurements). The background has been removed from all
images.

a pedestrians’ trajectory is marked as crossing if we actually
saw her crossing the street.
Please note that this method of automatic labeling has
some disadvantages, which mainly arise due to sudden or
severe motion changes. We have discussed these problems
intensively in our previous work [2].

C. Image Data

For our first experiments we use the Velodyne [2]. This
decision was made mainly because of it’s 360◦ field-of-view
and the availability of reliable object detection and tracking
algorithms. Accordingly, raw LiDAR data are available for
every track. The Velodyne provides for every point both the
id of the measuring laser and the rotation angle of the sensor
itself. Using these two information it is possible to create a
2D image in angular coordinates. Both of the Velodynes raw
measurements (range and intensity) can be used to create
gray scale images if plotted with a gray color map. For our
purpose we use the previously mentioned object detection
to both cut the pedestrians from the gray scale range image
and remove the background. Same examples of the resulting
images are shown in Figure 6.

D. Neural Network Training and Results

For our test we separate the database into a training (80%)
and a test (20%) set. In this section we use only the training
set for cross validation. Initial tests have shown that using
all recorded features (with input dropout) does not improve
results compared to the selected, minimal feature set (a
subset of all features, from [2]). Most additional features led
to fast over-training without improvements on the validation
set.



0 100 200 300 400 500

4

5

6

Number of training epochs

M
is

cl
as

si
fic

at
io

ns
[%

]
Dense NN

LSTM

Fig. 7. Training progress of the Dense Network and the LSTM are
shown over the number of training epochs for one training run of the cross-
validation.

Most hyper-parameters were chosen by training several
hundred different networks and selecting and fine-tuning the
ones with the highest accuracy. The best performing dense
neural network consists of three layers, each with rectified
linear functions and dropout of 50%, and achieved a averaged
cross-validation accuracy of about 96.21%. The number of
units per hidden layer were 32, 64, and 128 . Figure 7
displays the training progress over time for one training run
within the cross-validation.

The recurrent network did not achieve the same level of
accuracy as the simple dense networks. Our best performing
LSTM, a two layer LSTM with 64 and 128 hidden units,
has a 95.77% cross-validation accuracy. LSTMs outperform
when information has to be stored for a longer period of
time. For pedestrians crossing the street, information about
orientation and velocity from a few time-steps ago does not
seem to be useful anymore. Usually, there is a, more or
less, clear point where the pedestrian starts going towards
the crosswalk but no prior information in their movements
before that point. The advantage of the dense network is that
it has simultaneous access to all currently relevant time steps
and can make its decision based on all of those at the same
time.

The convolutional networks did not offer additional in-
sights into the pedestrian classification. Without the hand-
crafted features, we could only achieve a 3.5% increase in
classifying an input of images from 5 time-steps at a time
over selecting the bias value. Adding image features to our
hand-crafted input vector did not lead to any information
gain. A detailed analysis of this will be given in the following
section.

E. SVM vs. Neural Networks

In this section we will analyze the performance of our
dense classification network from Section III compared to
the SVM from our previous work [2]. This evaluation is
performed on the test set introduced in the previous section.
Figure 8(a) shows the percentage of correctly identified
crossing pedestrians as a function of the distance to the
crosswalk. All methods show an equally good performance
for distance smaller than 3m. For all larger distances the
simple dense neural network outperforms the SVM by 10

to 20%. This shows the potential of neural networks for
identifying crossing pedestrians at large distances. For the
combination of our hand-crafted features and the image-
based features we did not obtain the expected improvement
in performance. For most cases the performance is either
identical or slightly worse than without the images. We
assume that the major reason for this is the quality of the
images. Although the Velodyne provides a 360◦ surround
view, neither the horizontal nor vertical resolution provide
detailed enough information. Usually it is possible to count
the single pixels in one of these images (compare Figure
6), and especially at large distances it is possible that a
pedestrian only consists of 20-40 points. Since it has been
proven that image-based features can be used to improve
the performance of state-of-the-art algorithms (e.g. [6]), we
assume that we could achieve a better performance with a
more detailed image source.

F. Evaluation of the Time Horizon

Usually pedestrians predictions around urban street are
evaluated in respect to the remaining time-to-cross (e.g. [6]).
This makes it possible to specify a temporal prediction hori-
zon. Unfortunately, this procedure cannot be directly applied
to non-crossing pedestrians. Their trajectories obviously do
not cross the street and in many cases do not come close to
it. Therefore it is not possible to estimate a time-to-cross for
these pedestrians. Considering this together with the results
from Figure 8, we decided to only analyze the crossing
trajectories in this section. This means that the model is
still trained with the full dataset, but the only the crossing
trajectories from our test set are analyzed.
The results for our best dense neural network compared to
the SVM are shown in Figure 9. We can see the limitations
of our SVM baseline. Mainly due to vast speed changes the
classification accuracy drops very fast even for small times
(< 3 s). On the other hand we can see a totally different
behavior for our dense neural network, where the accuracy
is never lower than 80%.
Compared to our previous distance based evaluation (Figure
8(a)) we notice that the shown minimum accuracy is higher.
The reason for this is easily explained: The highest observed
time-to-cross in the shown portion of the database is 12 s.
These high times correspond to a distance-to-cross > 5 m
and belong to very slow walking pedestrians. Unfortunately
the number of trajectories for such large times is relatively
low in our current database. Therefore we decided to not
evaluate the accuracy for these times. Hence for this time
evaluation the slow walking pedestrians are biased by faster
ones.

V. CONCLUSION

In this paper we proposed the use of deep learning ar-
chitectures for identifying the pedestrians’ intention to cross
the street at a given crosswalk. First, we introduced a dense
neural network which classifies intention based on features
from several timesteps. Second, the time-series features are
analyzed using recurrent networks, namely LSTMs. Third,
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Fig. 8. Classification results for different network structures compared to the baseline SVM. The accuracy is shown both for crossing (a) and non-crossing
(b) pedestrians. The shown neural networks are: the dense network solely with hand-crafted features (Dense NN), and with additional convolution layers
for feature extraction from LiDAR images (Dense+Img). For better readability the results are evaluated relative to the discretized distance to cross.
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Fig. 9. Time-based evaluation. The results of both the SVM and the
best dense neural network are shown. The classification accuracy is only
evaluated for crossing pedestrians relative to their remaining time-to-cross.
For better readability the time-to-cross is evaluated for discretized intervals.

the influence of image-based features learned from LiDAR
images is analyzed. We have shown that all algorithms
are able to outperform the baseline SVM. The best results
are achieved with the dense network with a hand-crafted
feature input. This is especially the case for predicting
the pedestrians’ intents earlier and further away from the
crosswalk. Both the LSTM and the convolutional layers did
not lead to the expected improvement. Especially the LSTM
suffers from missing clues for significant movement changes
in the pedestrians’ trajectory. E.g. a head-tracking based on
high resolution images could be helpful in this situation.

The evaluation of the temporal prediction horizon showed
a very good accuracy for the investigated crossing pedestri-
ans even for large times. For the given dataset the accuracy
of the proposed dense neural network never dropped below
80% for the given time horizon of 6 s.
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