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Abstract— Environmental conditions and external effects,
such as shocks, have a significant impact on the calibra-
tion parameters of visual-inertial sensor systems. Thus long-
term operation of these systems cannot fully rely on factory
calibration. Since the observability of certain parameters is
highly dependent on the motion of the device, using short data
segments at device initialization may yield poor results. When
such systems are additionally subject to energy constraints, it
is also infeasible to use full-batch approaches on a big dataset
and careful selection of the data is of high importance.

In this paper, we present a novel approach for resource
efficient self-calibration of visual-inertial sensor systems. This
is achieved by casting the calibration as a segment-based
optimization problem that can be run on a small subset of
informative segments. Consequently, the computational burden
is limited as only a predefined number of segments is used.
We also propose an efficient information-theoretic selection to
identify such informative motion segments. In evaluations on
a challenging dataset, we show our approach to significantly
outperform state-of-the-art in terms of computational burden
while maintaining a comparable accuracy.

I. INTRODUCTION

In this work, we address the problem of sensor self-
calibration of a visual-inertial tracking system, i.e., a state
estimation system that fuses measurements from an in-
ertial measurement unit (IMU) and one/multiple cameras
to compute pose (position and orientation) estimates of a
moving platform. In recent years visual-inertial tracking has
witnessed an ever increasing gain in popularity and is used
in numerous mobile devices, virtual and augmented reality
systems, and robotic platforms. This success story results
in large-scale projects such as Google Tango or Microsoft’s
HoloLens promising to make these complex systems avail-
able as part of consumer devices with a limited energy
supply and may be operated by inexperienced users over a
potential lifespan of several years. These developments pose
novel technical challenges to ensure accurate calibration of
extrinsics and intrinsics of the underlying sensor systems.

Outside a lab environment, varying environmental con-
ditions (such as temperature) and a long lifespan result in
changing calibration parameters that make permanent use
of factory calibration infeasible even when assuming all
parameters to be constant over a short or medium times-
pan. In the absence of experienced engineers with access
to special calibration routines and calibration patterns, the
systems need to be capable of calibrating automatically in
a potentially unknown environment. Even though it was
shown that calibration is also possible by using natural visual
landmarks only [1], parameters such as axis misalignment
of the IMU can only be observed under certain motion. One
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Fig. 1: Riding down Mount Uetliberg on a mountain-bike with a
camera and IMU attached to the rider’s helmet: This dataset is
a good illustration of the vastly varying amount of information
available in different segments of the trajectory. The color indicates
the information content of the segment w.r.t. the sensor calibration
parameters (intrinsics and extrinsics of camera/IMU) where a lower
value indicates more information. Consequently, the information
measure is used to sparsify the sensor self-calibration problem by
excluding less informative portions of the dataset.

possible solution is to run a full-batch calibration procedure
over as much data as possible. However, this results in a huge
computational load making this methodology infeasible for
consumer devices with limited computational resources and
a limited power supply.

This work makes use of the fact that visual-inertial es-
timation systems typically run for a sufficiently long time
to perform a lot of different types of motion eventually.
Therefore, our system is designed to automatically select
informative motion segments, that are well suited for calibra-
tion. The information measure, used for this identification,
is illustrated on an example trajectory in Fig. 1. The most
informative segments are then stored in a database and used
to refine the calibration from time to time. This not only
helps in getting good calibration data, but also reduces the
size of the calibration problem considerably. Furthermore,
we show that the results of our calibration, using only a
small number of segments, is comparable in accuracy to the
results obtained with a full batch approach over all the data
collected.

This paper makes the following contributions:



• We present an efficient information-theoretic procedure
to identify the most informative segments of a trajectory.

• We propose a segment-based method for self-calibration
of the intrinsic and extrinsic parameters of visual-
inertial sensor systems.

• In thorough evaluations we show that the proposed
methodology achieves comparable results to a full batch
approach and state-of-the-art while at the same time re-
quires a significant lower complexity and computational
effort.

II. RELATED WORK

Over the last decade, visual-inertial SLAM has received
great attention from the research community and tremendous
progress has been achieved. For example, the work of [2]
demonstrates a fixed-lag-smoother based VIO framework,
that achieves accuracies in the sub-percent range over the
travelled distance. However, on constrained platforms such
as mobile phones, filtering based algorithms are preferred
such as [3] and [4] that show similar accuracies at lower
computational complexity.

To achieve such accuracies, precise calibration of the
sensor models is required. Traditionally, camera models are
calibrated using a calibration target such as in the work
of [5]. It has also been shown that camera models can be
obtained using natural features only [6]. The increasing usage
of low-cost MEMS IMUs further requires calibration of the
inertial sensors, referred to as IMU intrinsics. The work of
[7] presents an inertial model, which we will adopt in this
work, that considers scale inaccuracies and misalignments of
individual sensors axes. In [8] a batch estimator is presented
that calibrates the latter model relying on a calibration
pattern. The model of [9] additionally considers the location
of individual accelerometer axes where the parameters are
estimated in a continuous-time formulation using a paramet-
ric estimation framework.

The recent roll-out of advanced SLAM systems to a wide
audience creates a need for simple calibration algorithms
accessible to users without access to special equipment such
as calibration targets. The work of [1] mitigates these short-
comings by including the calibration parameters directly into
an EKF-based VIO estimator and performing visual and in-
ertial self-calibration solely based on natural features. Visual
inertial systems, however, require special motion in order to
render all calibration parameters observable [10]. Therefore,
observability-aware calibration methods have been developed
to aid non-expert users in collecting a complete dataset of
minimal size and improve the estimation quality. In [11], a
set of informative segments is selected using an information-
gain measure to consequently perform a calibration over
this set. Further, a truncated QR solver is used to constrain
parameter updates to the observable sub-space. The gener-
ality of this method makes it applicable to a wide-range
of estimation problems. Unfortunately, the evaluation of the
utilized information metric is expensive and can prevent
its use especially on resource constrained platforms. In our
work, we follow a similar approach and identify informative
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Fig. 2: Frame of reference definitions for the visual-inertial system.
A camera, 3-dof accelerometer and 3-dof gyroscope are rigidly
attached to an agent. The estimated pose of the agent at timestep
k is expressed by the transformation Tk

GI . A 6-dof transformation
matrix TCI relates the gyroscope’s frame I to the camera’s frame
C. The accelerometer frame A is only rotated w.r.t. gyroscope’s
frame I by RIA, since IpIA in single-chip MEMS-IMUs is
typically close to zero.

motion segments to build a sparser but complete calibration
dataset. Similarly to the work of [12], we use the entropy to
efficiently approximate the information content of segments
but calibrate the full visual-inertial model instead of just a
camera. Additionally, we extend the information measure and
evaluate the informativeness of segments w.r.t. to subgroups
of the high-dimensional parameter vector and thus mitigate
the drawback of using a scalar measure. Another interest-
ing approach approximates the information of a trajectory
segment by the local observability Gramian, as described in
[13], where it is used in an active calibration setting.

III. VISUAL-INERTIAL MODELS AND CALIBRATION

In this section, we will introduce the sensor models for the
camera and IMU and formulate the batch estimation problem
for self-calibration. 1

A. Notation and Frames of Reference

A transformation matrix TAB ∈ SE3 takes vector Bp ∈
R3 from the frame of reference B to the frame of reference A
and can be further partitioned into a rotation matrix RAB ∈
SO3 and a translation vector ApAB ∈ R3 as follows:[

Ap
1

]
= TAB ·

[
Bp
1

]
=

[
RAB ApAB

0 1

]
·
[
Bp
1

]
(1)

Further, the unit quaternion qAB represents the rotation
corresponding to RAB as defined in [14]. The operator
TAB(·) is defined to transform a vector in R3 from B to
the frame of reference A as Ap = TAB (Bp) according to
Eq. (1).

The Fig. 2 illustrates the relevant coordinate frames used
within this work. The frame G denotes a gravity aligned
(Gez = −g) inertial frame and is used to express the
estimated pose of the agent Tk

GI and the position of the
estimated landmarks Glm. The frame I coincides with the
sensing axes of the gyroscope and is chosen as the body
frame of the agent. The camera frame C and accelerometer

1It is important to note that the method described in this paper generalizes
to arbitrary problems, however it is presented on the application of visual-
inertial self-calibration.



frame A are rigidly attached to the body frame. The extrinsic
calibration transformations for the camera TCI and the
rotation matrix for the accelerometer RIA are to be estimated
and are both defined relative to the frame of the gyroscope
I that is used as the body frame.

B. Inertial Model

A triad of (ideally) orthogonal gyroscopes are used to
sense the true angular velocities IωGI of the body frame
I w.r.t. the world-fixed inertial frame G. The gyroscope
measurements ω̃ are modeled similar to [7, 1] as:

ω̃ = Tg ·I ωGI + bg + ηg (2)

where the bias bg follows a random walk process as ḃg =
ηbg and ηg and ηbg are zero-mean, white Gaussian noise
processes. The matrix Tg accounts for scale errors and
sensor axis misalignments present in cheaper sensors. It is
assumed to be a constant over time and is structured as:

Tg =

sxg mx
g my

g

0 syg mz
g

0 0 szg

 , sg =

sxgsyg
szg

 ,mg =

mx
g

my
g

mz
g

 (3)

with sg and sg denoting the collection of all parameters from
Tg .

Similarly, the specific force measurements ã of the ac-
celerometer are modeled as:

ã = Ta ·RAI ·Rk
IG · (GaGI −G g) + ba + ηa (4)

where Ta is a calibration matrix and ba defines a random
walk process analog to the gyroscope model. The calibration
states for the IMU models can be summarized as:

θi =
[
sTg mT

g sTa mT
a qTAI

]T
(5)

It is important to note that the values of the scale param-
eters si can’t be used directly to correct the scales of each
individual axis, instead a linear combination of all factors
applies. Further details can be found in [1].

C. Camera Model

Let Glm denote a 3-d landmark observed from keyframe
k that is projected into a 2-d point zk,m on the image plane
of the camera as follows:

zk,m(TIG, lm,θc) = fp(θc,TCI(TIG(Glm))) + ηc (6)

where fp(·) denotes the perspective projection function and
ηc ∼ N (0, σ2

c · I2) a white Gaussian noise process.
For the evaluations, we parametrize the projection function

fp using a pinhole camera model and field-of-view (FOV)
distortion model of [6]. The calibration state relevant for the
camera model then is:

θc =
[
qCI

T
CpCI

T fT cT w
]T

where qCI and CpCI are the extrinsic calibration of the
camera w.r.t. IMU, f =

[
fx fy

]T
the focal lengths, c =[

cx cy
]T

the principal point and w a distortion parameter.

...

Fig. 3: Calibration problem in factor graph representation that
contains visual-inertial keyframe states xk (pose, velocity and IMU
biases), landmarks lm and calibration states for the camera θc

and IMU θi. The square around the initial node x0 denotes a
gauge fix of the position GpGI and rotation around the gravity
vector. Integrated IMU measurements constitute the inertial fac-
tor gimu

k (xk,xk−1,θi,uk) and the landmark projection factors
gcamk,m (xk, lm,θc, zk,m) models the camera measurements.

D. Maximum-likelihood Estimator

The framework of maximum-likelihood estimation is used
to jointly estimate all keyframe states xk (Eq. (7)), the scene
as a set of observed point landmarks Glm, the calibration
parameters of the camera θc and the IMU θi with the
keyframe state xk being defined as:

xk =
[
qkGI

T
GpkGI

T
GvkI

T
bka

T
bkg

T
]T

(7)

where qkGI and GpkGI denote the pose of the agent, GvkI
the velocity of the IMU expressed in frame G, and bk· the
biases for the gyroscope or accelerometer. For convenience
of notation, the individual states are stacked into vectors as
follows:

X̂ =
[
x̂T0 . . . x̂TK

]T
, L̂ =

[
G l̂M

T
. . . G l̂M

T
]T
,

θ̂ =
[
θ̂Tc θ̂Ti

]T
where K denotes the number of keyframes and M the
number of landmarks. Additionally π̂ defines the collection
of all estimated quantities as:

π̂ =
[
θ̂T X̂T L̂T

]T
We want to infer π from measurements zk,m made by a
camera and measurements uk of an IMU. The stacked vector
forms of the measurements are defined as follows:

Z = {zk,m|k ∈ [0,K],m ∈ [0,M(k)]}
U = {uk|k ∈ [0,K − 1]}

Following the sensor models described in Section III-B-
III-C, a probability model is defined as shown in Fig. 3.
Probabilistic inertial constraints gimuk between consecutive
keyframe states k and k + 1 are formed as a function of
the integrated IMU measurements and the corresponding
measurement uncertainties [3]. The likelihood p(·) of this
model can be expressed as:

p(π|Z,U) ∝
K∏
k=1

p(xk|xk−1,θi,uk)

·
K∏
k=0

M(k)∏
m=0

p(zk,m|xk, lm,θc)
(8)
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Fig. 4: System overview and context: informative motion segments
are identified from the output of an existing ego-motion estimator
(COM) and maintained in a database for future calibration.

where p(xk|xk−1,θi,ui) denotes the inertial constraints
between two consecutive keyframe states as a function of
integrated IMU measurements uk and p(zk,m|xk, lm) the
measurement model of the point landmark observation zk,m
of the m-th landmark observed from the k-th keyframe. More
details on the derivation can be found in [8].

The maximum-likelihood (ML) estimate π̂ML is obtained
by solving the optimization problem that maximizes the
likelihood of Eq. (8):

π̂ML = argmax
π

p(π|Z,U) (9)

With the assumptions of Gaussian noise for all sensor
models, as discussed in Section III-B and Section III-C, the
optimization problem defined in Eq. (9) is equivalent to a
non-linear least squares problem. This problem can be solved
using numerical minimization approaches, where standard
methods include Gauss-Newton, Levenberg-Marquardt, Dog-
leg, etc. In our implementation, we use the Levenberg-
Marquardt implementation of the Ceres framework [15].

IV. METHOD

The proposed self-calibration method aims at being run
in parallel to an existing visual-inertial SLAM system that
provides motion estimates as shown in Fig. 4. In our im-
plementation we use a concurrent odometry and mapping
(COM) framework consisting of [3], [16] and [17] but it is
important to note that the proposed algorithms are not tied
to a particular SLAM formulation. The SLAM system uses
a calibration from previous runs or nominal values for the
device at hand. 2 The stream of estimated keyframes x̂i and
landmarks l̂i leaving the COM module is partitioned into
motion segments Si of a predefined size N as follows:

X̂i
S =

[
x̂Ti , · · · , x̂Ti+(N−1)

]T
L̂iS =

[̂
lTi , · · · , l̂Ti+(N−1)

]T (10)

where X̂i
S denotes the keyframes within the i-th segment and

L̂iS the landmarks observed by the i-th segment. An efficient
information-theoretic measure is used to evaluate each new
candidate segment for their information content w.r.t. the
calibration parameters and the most informative segments are
maintained in a database. Once enough segments have been
collected, an ML-based calibration is triggered to estimate

2If no priors are available, a complete self-calibration may be difficult and
specialized initialization techniques should be used beforehand e.g. [5, 18].

the calibration parameters. An overview of the algorithm is
shown in Alg. 1. The remainder of this section will discuss
the algorithm in more detail.

Algorithm 1 Method shown for a single parameter group

Input: Initial calibration: θ̂init

Output: Updated calibration: θ̂

Loop
// Initialize motion segments of size N from COM output.
Si ← {}
repeat

data = WaitForNewSensorData()
x̂j , l̂j ← RunCOM(data, θ̂init)
Si ← Si ∪ (x̂j , l̂j)

until dim(Si) == N ;

H (θ)← EvaluateSegmentInformation(Si) // Section IV-A
UpdateDatabase(Si, H (θ)) // Section IV-B
if EnoughSegmentsInDatabase() then

Sinfo ← GetAllSegmentsFromDatabase()
θ̂ ← RunOptimization(Sinfo) // Section IV-C
return θ̂

end
i← i+ 1

EndLoop

A. Evaluating Information Content of Segments

We use the differential entropy to quantify the information
content of the i-the candidate segment Si w.r.t. the calibration
parameters θ by considering only the constraints within each
segment. Using the entropy to evaluate the information of
a candidate segments, as a score that is independent of all
other segments, makes its evaluation very efficient at the cost
that information coming from other segments is neglected.
For example, loop-closure constraints cannot be considered
in the score, however, loop-closures are considered during
calibration.

To calculate the segment entropy, we first approximate the
covariance matrix of all states in the segment by the inverse
of the Fisher Information Matrix as:

ΣXLθ = Cov
[
p(Xi

S ,L
i
S ,θ|Ui,Zi)

]
= (JTi T−1i Ji)

−1

(11)
where Ji denotes the Jacobian of all error-terms in the
segment and Ti the stacked error-term covariance where the
column ordering is chosen that the calibration parameters
θ lie on the right side. To avoid a costly inversion of
Eq. (11), which becomes intractable for larger problems, we
make use of a rank-revealing QR decomposition to obtain
QiRi = LiJi where T−1i = LTi Li denotes the Cholesky
decomposition of the error-term covariance matrix. Eq. (11)
can then be rewritten as:

ΣXLθ = (RT
i Ri)

−1 =

[
ΣXL ΣXL,θ

ΣT
XL,θ Σθ

]
(12)

In the context of sensor calibration, the keyframe Xi
S and

landmark states LiS are considered nuisance variables and
we are only interested in the marginal covariance Σθ =
Cov [p(θ|Ui,Zi)] of the calibration parameters θ. As Ri

is an upper-triangular matrix, we can efficiently obtain the
marginal covariance Σθ by back-substitution.
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Fig. 5: Histogram of normalized segment entropies H (θ) over 450
segments from 15 datasets.

Before calculating the entropy, we normalize the marginal
covariance Σθ to account for the different scales of the
calibration parameters. The normalized covariance Σ̄θ is
calculated as:

Σ̄θ = diag(σref )−1 ·Σθ · diag(σref )−1 (13)

where σref is the expected standard deviation of θ̂ and was
obtained from statistics over multiple reference segments.
The differential entropy H (θ) of the normalized multivari-
ate normal distribution p̄θ(θ) = p̄(θ|Ui,Zi) can then be
calculated as:

H (θ) = −
∫ ∞
−∞
· · ·
∫ ∞
−∞

p̄θ(θ) ln p̄θ(θ) dθ

=
1

2
ln
(
(2πe)k · det

(
Σ̄θ

))
,

(14)

where k is the dimension of the normal distribution.
The segment entropy H (θ) is not a directional measure

and thus summarizes the information of all parameters θ in a
single scalar value. For high-dimensional calibration vectors
θ, however, the contribution of well-observable modes to the
entropy might shadow weaker modes despite normalization.
This effect causes the distribution of the entropies to remain
multimodal (as shown in Fig. 5) because the number of
informative segments vs. less informative segments is in
general not distributed equally within a given dataset.

For this reason, the vector of calibration parameters θ is
partitioned into Q sub-vectors θq as:

θ =
[
θ̃T0 . . . θ̃TQ

]T
(15)

The marginal entropy is calculated for each parameter group
q using the corresponding marginal covariance Σ̄θ̃q

as de-
scribed in Eq. (14). The marginal segment entropies H (θq)
are then directly used as a measure of information contained
in the segment w.r.t. to the parameters of group q (where a
lower entropy corresponds to richer information).

In this work, we partition the parameters θ into three
groups by sensor:

θ̃0 =
[
sTg mT

g sTa mT
a qTAI

]T
θ̃1 =

[
fT cT w

]T
θ̃2 =

[
qCI

T
CpCI

T
]T (16)

This follows the intuition that the problem exhibits different
co-observability structures i.e. a set of parameters is always
observable as a group e.g. the camera model requires only
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Fig. 6: The upper graph shows the full keyframe/landmark graph
where the keyframes are assigned into fixed-size segments and the
segments found to be informative are marked by green check-marks
The motion segments of the sparsified problem (shown below) can
be partitioned into disjoint sets that are neither connected through
inertial constraints nor share more than N landmark observations
with other partitions. During optimization, the structurally unob-
servable states are fixed for exactly one keyframe per partition
(marked by a square: e.g. 1)

.

minimal motion (once the landmarks are initialized) whereas
the inertial model requires sufficient excitation. A more
thorough analysis of how to identify the co-observability
structure and thus optimally group the parameters should be
part of future work.

B. Collecting Informative Segments in a DB

A database with Q tables is maintained where each table
retains the N most informative segments for the correspond-
ing parameter group q. Segments can be in multiple tables if
it is informative w.r.t. multiple parameter groups. Therefore,
the complexity of the calibration problem has an upper
bound, as the max. number of segments in the database can
be Q ·N (or less if segments are in multiple tables).

It is important to note that the sum of segment entropies is
a conservative approximation to the true information in the
database for two reasons: First, the entropy is a scalar that
“summarizes“ the information of several parameters and thus
does not contain any directional information. Second, for
efficiency, the segment entropy is calculated by neglecting
the cross-terms to other segments. This approximation of
the information in the database can lead to the collection of
redundant segments in the database. Nevertheless, the very
efficient evaluation of the segment entropies outweighs the
run-time penalty from including such redundant segments
into the optimization

C. Sparsified Problem using Informative Segments

The calibration over the set of informative segments differs
from the full batch problem, described in Section III, in
that non-informative segments have been removed. This
results in missing inertial constraints between the remaining
segments as shown in Fig. 6 (e.g. between keyframe 6/10
and 12/16). The set of segments can then contain partitions
that are neither constrained to other partitions through inertial
constraints nor by joint landmark observations. Each of these
partitions can be seen as a (nearly) independent calibration
problem only sharing calibration states with other partitions.

If we assume the availability of sufficient landmark con-
straints and non-degenerate motion (e.g. only rotation), then
the visual-inertial calibration problem contains two struc-
turally unobservable states: the global orientation around



the gravity vector and the global position. To ensure an
optimal and efficient convergence of the iterative solvers
these redundant degrees of freedom need to be held constant
during optimization for exactly one keyframe in each of the
partitions.

Algorithm 2 Partitioning segments on landmark co-visibility
Input: Set of motion segments S = {S0, ...,SK}
Input: Max. co-observed landmarks between partitions N
Result: Set of motion segment partitions P
P← {}
foreach Sk ∈ S do

C← {{Sk}}
foreach p ∈ P do

if CountSharedLandmarks (p, Sk) > N then
C← C ∪ {p}

end
end
pC ← MergePartitions(C)
P← (P \C) ∪ {pC}

end

Consequently, we identify these partitions by first joining
all motion segments that have direct temporal neighbors
into bigger segments (Fig. 6: e.g. segment 1 and 2). At
this point, all keyframes within the joined segments are
constrained through inertial constraints. The union-find algo-
rithm, shown in Alg. 2, is then used to iteratively partition
the segments into disjoint sets such that the count of co-
observed landmarks between the partitions lies below a given
threshold N (here: 15). This ensures that all keyframes
within these partitions are either connected through inertial
constraints or share sufficient landmark observations with
other keyframes of the same partition. Degenerate landmark
configurations are theoretically possible, when using such
a heuristic landmark threshold, but are highly unlikely and
would only affect the convergence rate but not bias the
estimates.

Additionally, a constraint between two bias states is intro-
duced if keyframes were removed between the two (Fig. 6:
e.g. between keyframe 6-10 and 12-16). The bias evolution
is modeled using a random walk as described in Eq. (III-B).

V. EXPERIMENTS AND RESULTS

A collection of 15 datasets is used to assess the perfor-
mance of the proposed visual-inertial self-calibration method.
The datasets were collected using a Google Tango Dev. Kit.
tablet equipped with a MEMS IMU and a global shutter
fisheye camera. The device was hand-held while recording
multiple trajectories of 3 min duration while freely moving
in a room of approx. 8x6 m with a height of 4 m. The
trajectories consist of calmer sections and sections that excite
all rotational and translational degrees of freedom. Fig. 7
shows an image of the experimental environment together
with a top-down view on one of the recorded trajectories.

In this section, we discuss our evaluation results based on
these datasets along the following questions:
• Does the sparsified calibration problem yield compara-

ble results to the batch solution (Section V-A)?
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Fig. 7: Top-down view on the estimated trajectory of one of the
evaluation datasets.

• Is the proposed measure capable of identifying infor-
mative segments (Section V-B)?

• Can the estimation be improved by grouping certain
parameters and collecting segments for each group
separately (Section V-C)?

• How does the proposed approach perform against com-
parable state-of-the-art methods in terms of run-time
and estimation results (Section V-D)?

A. Performance and Repeatability of the Calibration

We compare the estimated parameters of the sparsified
problem to the batch solution that uses all keyframes. The
sparsified problem, here, denotes the calibration problem that
only contains the most informative segments as described in
Section IV. The initial calibration states were set to the CAD
values, if available, otherwise to the expected nominal values
(i.e. no sensor misalignment, unit scale factors). Table I
shows the mean and standard deviation over the estimated
parameters of the 15 different datasets and the convergence
of the estimator is shown in Fig. 8. The mean of rotation
parameters corresponds to the Rodrigues angle γ(·) of the
averaged quaternion [19] over all data points and the standard
deviation is calculated from the Rodrigues angles between
the data points and the averaged quaternion.

These experiments show that the deviation between the
sparsified estimation and the batch solution remains insignif-
icant, in both the mean and standard deviation, even though
large portions of the trajectory have been removed. This
indicates that the proposed method can sparsify the problem
while retaining an estimation quality close the batch solution
at a drastically reduced run-time. It is important to note, that
we cannot evaluate the accuracy of the estimated parameters
as no ground-truth data is available, the statistics, however,
give a good indication of the precision that can be achieved.

B. Evaluation of Segment Entropy to Select Informative
Segments

In this section, we conduct an experiment to investigate
the suitability of the segment entropy to identify informative
segments. For this reason, we let the estimator from Sec-
tion IV collect the least informative segments and compare
the convergence of two parameters with results obtained by
selecting the most informative segments. In both cases, we
collect 8 segments each of which consists of 40 keyframes
resulting in a total of 320 keyframes which is equal to
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Fig. 8: Convergence of the calibration parameters for each update of the database i.e. when a new segment is added or a less informative
segment is replaced. The y-axis shows the deviation to the batch solution as: e (x) = ‖x̂(k)� x̂batch‖.

TABLE I: Estimated calibration parameters for three different
algorithms. The statistics are taken over 15 datasets and show the
mean and standard deviation. The number of used segments and
run-time can be found in Table III.

parameter informative all segments related work
(proposed method) (batch) [11]

f [px] 254.71 ± 0.28 254.50 ± 0.13 254.89 ± 0.35
254.63 ± 0.29 254.47 ± 0.14 254.68 ± 0.32

c [px] 317.26 ± 0.32 317.51 ± 0.18 317.74 ± 0.35
244.61 ± 0.45 244.56 ± 0.21 242.87 ± 0.67

w [-] 0.9222 ± 0.0003 0.9222 ± 0.0003 0.9227 ± 0.0007
sg − 1 [-] 6.17e-04 ± 9.61e-04 4.45e-05 ± 3.52e-04 5.40e-04 ± 1.10e-03

5.80e-03 ± 8.51e-04 5.56e-03 ± 5.36e-04 4.78e-03 ± 1.53e-03
8.54e-04 ± 3.89e-04 8.44e-04 ± 1.97e-04 4.00e-04 ± 6.74e-04

sa − 1 [-] -2.07e-02 ± 2.28e-03 -2.07e-02 ± 1.47e-03 -2.15e-02 ± 2.33e-03
-1.73e-02 ± 1.25e-03 -1.77e-02 ± 5.21e-04 -1.82e-02 ± 1.01e-03
-1.42e-02 ± 1.34e-03 -1.49e-02 ± 5.39e-04 -1.45e-02 ± 1.08e-03

mg [-] 3.44e-04 ± 6.48e-04 7.42e-05 ± 3.23e-04 2.94e-04 ± 7.52e-04
1.07e-03 ± 8.49e-04 1.23e-03 ± 4.75e-04 1.42e-03 ± 1.16e-03
7.38e-04 ± 8.36e-04 4.31e-04 ± 5.02e-04 6.75e-04 ± 5.51e-04

γ(qGA) [deg] 1.467 ± 0.141 1.498 ± 0.056 1.501 ± 0.060
ma [-] 1.78e-02 ± 4.58e-03 1.79e-02 ± 2.10e-03 1.82e-02 ± 1.88e-03

-2.91e-02 ± 3.02e-03 -2.95e-02 ± 1.35e-03 -3.00e-02 ± 1.75e-03
-1.18e-05 ± 1.80e-03 1.13e-04 ± 1.14e-03 -1.62e-03 ± 1.32e-03

CpIC [m] 2.92e-03 ± 2.79e-03 4.12e-03 ± 1.01e-03 -3.43e-03 ± 3.42e-03
1.25e-02 ± 2.55e-03 1.34e-02 ± 1.37e-03 1.38e-02 ± 1.94e-03

-5.47e-03 ± 2.86e-03 -5.68e-03 ± 1.14e-03 -2.81e-03 ± 3.01e-03
γ(qIC) [deg] 0.311 ± 0.062 0.306 ± 0.019 0.170 ± 0.047

the data of 32 s. The convergence is shown in Fig. 9
together with the statistics on the final calibration states.
The calibration using the set of least-informative segments
yields a higher estimation error w.r.t. the batch solution
and a higher variance than the estimation using the most-
informative segments. This can be seen as an indication that:

1) the selection using the entropy identifies segments
containing relevant information for sensor calibration,

2) the ratio of the number of selected segments to the
total count of segments in the dataset is sufficiently
low such that a careful selection is actually necessary.

C. Influence of Multiple Parameter Groups

In this section, we analyze the effect on the estimation
performance when collecting segments for individual param-
eter groups. The estimator has been run with the parameter
groups described in Section IV-B and as a comparison with
a single group that contains all calibration parameters.

The Table II lists statistics of two estimated calibration
parameters over 15 datasets. The results show that the
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Fig. 9: Estimator performance when collecting the most-informative
vs. the least-informative segments over 15 datasets. The plots show
the deviation e(·) of the proposed method to the batch solution.

TABLE II: Estimated calibration parameters: single parameter
group vs. multiple groups.

multiple groups single group batch

c [px] 317.35 ± 0.21 317.31 ± 0.35 317.51 ± 0.18
244.61 ± 0.29 244.51 ± 0.52 244.56 ± 0.21

mg [-] 1.64e-04 ± 4.54e-04 2.60e-04 ± 7.69e-04 7.42e-05 ± 3.23e-04
1.09e-03 ± 5.78e-04 1.05e-03 ± 9.96e-04 1.23e-03 ± 4.75e-04
5.33e-04 ± 5.18e-04 8.68e-04 ± 9.33e-04 4.31e-04 ± 5.02e-04

variance of the estimates can be reduced by using multiple
groups whereas the averaged error remains less affected.
Intuitively, this effect can be explained as follows: If the
problem structure contains groups of parameters that are
rendered observable by different motion patterns and only a
single informative database table is used then the chances are
higher that only one type of motion is kept. If multiple groups
are used, however, the content in the database gets more
stable and thus leads to a lower variance of the estimates.

D. Comparison to Related Method and Run-time

In this section, we compare the proposed method against
the work of [11] in terms of estimation performance and
run-time. The latter work follows a similar approach that
maintains a database of informative segments. A calibra-



TABLE III: Run-time and number of processed segments for
the three estimators. Each segment contains 40 keyframes and
corresponds to the data of 4 s. Statistics are collected over 15
datasets.

our method related work [11] batch

num. segments 8.7 ±1.5 9.0 38.0 ±3.2
run-time [s] 31.2 ±5.6 395.9 ±319.6 178.5 ±94.0

(7745.3 ±4601.7)

tion is run over the candidate segment and all segments
already contained in the database. The candidate is found
to be informative if the information gain w.r.t. a calibration
without the candidate segment lies above a certain threshold.
Since a complete calibration must be run for each candidate
evaluation the complexity grows with each new segment
in the database. In contrast to the proposed method, this
algorithm does consider all constraints when evaluating the
information content of a candidate segment and does not
make the assumption of segment independence as outlined in
Section IV-A. Furthermore, they use a truncated QR instead
of the Cholseky solver therefore it is more general and
applicable for a wider range of problems although at a higher
computational cost.

Two time points are given for the related work as it
doesn’t use an upper bound on the number of selected
informative segments. The first until the same amount of
informative segments are collected as in the proposed method
(≈ 9) and the second (in brackets) until the information
measure has been evaluated for each segment which is done
in the proposed method by default. The same 15 datasets,
used in the previous sections, have been processed with
both methods. The run-times are shown in Table III and
the estimated parameters in Table I. The results show that
the run-time of our algorithm is considerably lower than
the full-batch and related work at very similar estimation
performance.

VI. CONCLUSIONS

In this work, we presented a novel method for efficient
self-calibration of visual-inertial sensor systems that runs
in parallel to an existing SLAM system. An information-
theoretic measure is introduced to evaluate the information
content of motion segments keeping a fixed number of
the most-informative segments in a database. The proposed
measure can be efficiently evaluated without running an
expensive batch calibration beforehand. Once the database
contains enough data, an optimization is run over these
segments to update the calibration parameters.

Real-world experiments show that the sparsified problem
yields similar results to the full batch solution at a signifi-
cantly reduced computational cost. Even, when compared to
previous work on segment based calibration, our approach
shows a reduction of the run-time by a factor of approx. 10.
Therefore, the proposed method is well suited for performing
self-calibration on resource constrained platforms and can
enable accurate operation over the entire lifespan.
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